Representing Words with Vectors

Giri Iyengar
Cornell University
gi43@cornell.edu

Feb 21, 2018

Agenda for the day

- Learning Word Representations
- GloVe model
- Skip-Grams
- CBOW
- FastText

Overview

(1) Learning Word Representations

(2) GloVe model
(3) Skip-gram Model

4 CBOW model
(5) FastText

Word Representations

- Number of words in human language are far too numerous
- One-hot encoding doesn't capture relationships between words
- Compact representations would make the math work easier / training models easier
- Would be useful to capture Synonyms / Homonyms / Antonyms in these representations
- Would be useful to capture other relationships (e.g. King:Queen :: Man:Woman)

Word Representations: Some Assumptions

- Words that appear in similar contexts have similar meaning
- Co-occurrence of words convey meaning / structure of language
- Sub-word structures exist in languages

Word Representations

Goal

If we convert words into vectors in such a way that words with similar meanings will have vectors that lie nearby; Further if we can do vector arithmetic on them, it would be great. E.g. King - Man + Woman = Queen

Word Representations

Representing Words by Vectors

We want to do something like: King $\rightarrow(0.3,0.9,0.9,0.2)$, Queen $\rightarrow(0.3,0.9,0.1,0.2)$ etc

Word Representations

Overview

(1) Learning Word Representations
(2) GloVe model
(3) Skip-gram Model

(4) CBOW model

GloVe: Global Vectors for Word Representations

Pr. and Ratio	$\mathrm{k}=$ solid	$\mathrm{k}=$ gas	$\mathrm{k}=$ water	$\mathrm{k}=$ fashion
$P(k \mid$ ice $)$	$1.9 E-4$	$6.6 E-5$	$3.0 E-3$	$1.7 E-5$
$P(k \mid$ steam $)$	$2.2 E-5$	$7.8 E-4$	$2.2 E-3$	$1.8 E-5$
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	$8.5 E-2$	1.36	0.96

Table: Co-occurrence Probabilities and their ratios from a 6 Billion word corpus

GloVe model motivation

- Perhaps model a pair of words and their context as $F\left(w_{i}, w_{j}, \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}}$, where w is the vector representation we desire

GloVe model motivation

- Perhaps model a pair of words and their context as $F\left(w_{i}, w_{j}, \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}}$, where w is the vector representation we desire
- Futher, we want F to encode vector arithmetic, suggesting
$F\left(w_{i}-w_{j}, \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}}$

GloVe model motivation

- Perhaps model a pair of words and their context as $F\left(w_{i}, w_{j}, \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}}$, where w is the vector representation we desire
- Futher, we want F to encode vector arithmetic, suggesting
$F\left(w_{i}-w_{j}, \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}}$
- We also want to keep things linear, if possible:

$$
F\left(\left(w_{i}-w_{j}\right)^{T} \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}}
$$

GloVe model motivation

- Perhaps model a pair of words and their context as $F\left(w_{i}, w_{j}, \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}}$, where w is the vector representation we desire
- Futher, we want F to encode vector arithmetic, suggesting
$F\left(w_{i}-w_{j}, \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}}$
- We also want to keep things linear, if possible:
$F\left(\left(w_{i}-w_{j}\right)^{T} \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}}$
- The distinction between w and \tilde{w} is arbitrary. Applying

Homomorphism: $F\left(\left(w_{i}-w_{j}\right)^{T} \tilde{w}_{k}\right)=\frac{F\left(w_{i}^{T} \tilde{w_{k}}\right)}{F\left(w_{j}^{T} \tilde{w_{k}}\right)}$

GloVe model motivation

- This suggests: $F\left(w_{i}^{T} \tilde{w}_{k}\right)=P_{i k}$

GloVe model motivation

- This suggests: $F\left(w_{i}^{T} \tilde{w}_{k}\right)=P_{i k}$
- One solution: $w_{i}^{T} \tilde{w}_{k}=\log \left(P_{i k}\right)=\log \left(X_{i k}\right)-\log \left(X_{i}\right)$, where $X_{i k}$ is the co-occurrence count

GloVe model motivation

- This suggests: $F\left(w_{i}^{T} \tilde{w}_{k}\right)=P_{i k}$
- One solution: $w_{i}^{T} \tilde{w}_{k}=\log \left(P_{i k}\right)=\log \left(X_{i k}\right)-\log \left(X_{i}\right)$, where $X_{i k}$ is the co-occurrence count
- You can make this a completely symmetric model by introducing appropriate bias: $w_{i}^{T} \tilde{w}_{k}+b_{i}+\tilde{b}_{k}=\log \left(X_{i k}\right)$

GloVe model motivation

- This suggests: $F\left(w_{i}^{T} \tilde{w}_{k}\right)=P_{i k}$
- One solution: $w_{i}^{T} \tilde{w}_{k}=\log \left(P_{i k}\right)=\log \left(X_{i k}\right)-\log \left(X_{i}\right)$, where $X_{i k}$ is the co-occurrence count
- You can make this a completely symmetric model by introducing appropriate bias: $w_{i}^{T} \tilde{w}_{k}+b_{i}+\tilde{b}_{k}=\log \left(X_{i k}\right)$
- When $X_{i k}=0$, this is ill-defined.

GloVe model motivation

- This suggests: $F\left(w_{i}^{T} \tilde{w}_{k}\right)=P_{i k}$
- One solution: $w_{i}^{T} \tilde{w}_{k}=\log \left(P_{i k}\right)=\log \left(X_{i k}\right)-\log \left(X_{i}\right)$, where $X_{i k}$ is the co-occurrence count
- You can make this a completely symmetric model by introducing appropriate bias: $w_{i}^{T} \tilde{w}_{k}+b_{i}+\tilde{b}_{k}=\log \left(X_{i k}\right)$
- When $X_{i k}=0$, this is ill-defined.
- Introduce a weighting function $f\left(X_{i k}\right)$, giving us a new loss function to minimize:

GloVe model motivation

- This suggests: $F\left(w_{i}^{T} \tilde{w}_{k}\right)=P_{i k}$
- One solution: $w_{i}^{T} \tilde{w}_{k}=\log \left(P_{i k}\right)=\log \left(X_{i k}\right)-\log \left(X_{i}\right)$, where $X_{i k}$ is the co-occurrence count
- You can make this a completely symmetric model by introducing appropriate bias: $w_{i}^{T} \tilde{w}_{k}+b_{i}+\tilde{b}_{k}=\log \left(X_{i k}\right)$
- When $X_{i k}=0$, this is ill-defined.
- Introduce a weighting function $f\left(X_{i k}\right)$, giving us a new loss function to minimize:
- $J=\sum_{i, k}^{V} f\left(X_{i k}\right)\left(w_{i}^{T} \tilde{w}_{k}+b_{i}+\tilde{b}_{k}-\log \left(X_{i k}\right)\right)^{2}$

Overview

(1) Learning Word Representations
(2) GloVe model
(3) Skip-gram Model

4 CBOW model

Skip-gram Model

Predict a context word, given an input word

Given brown, what is the probability that the, quick, fox, jumps appear in its neighborhood in a sentence

Source Text

The	quick	brown
fox jumps over the lazy dog.	\Longrightarrow	

The	quick	brown	fox
jumps over the lazy dog.	\Longrightarrow		

The	quick	brown	fox	jumps
over the	lazy dog. \Rightarrow			

(brown, the)
(brown, quick) (brown, fox) (brown, jumps)

Training

 Samples(the, quick)
(the, brown)
(quick, the) (quick, brown) (quick, fox)
(bus)
(fox, quick) (fox, brown) (fox, jumps) (fox, over)

Skip-gram Model Training

- $P\left(w_{c} \mid w_{t}\right)=\frac{\exp ^{s\left(w_{t}, w_{c}\right)}}{\sum_{j=1}^{V} \exp ^{s\left(w_{t}, w_{j}\right)}}$
- Online training, using SGD

Skip-gram Model Training

- Consider special n-grams as single words: New York, Boston Globe
- Negative sampling to selectively at random update a few negative samples. Frequent words have a higher chance of being selected for negative sampling
- Sub-sample frequent words

Graph for (sqrt(x/0.001)+1)*0.001/x

Figure: Plot of word frequency and Probability of keeping. Empirically obtained

Overview

(1) Learning Word Representations
(2) GloVe model
(3) Skip-gram Model
(4) CBOW model

CBOW Model

- Instead of predicting the context, predict the target given the context
- Given (the, quick, fox, jumps), predict brown

INPUT PRONECTION OUTPUT

CBOW Model

- Works better than Skip-gram when corpus is smaller
- Embeddings are averaged across the context, perhaps resulting in more stable representations

Overview

(1) Learning Word Representations
(2) GloVe model
(3) Skip-gram Model
(4) CBOW model
(5) FastText

FastText Model

- All models presented so far, model whole words

FastText Model

- All models presented so far, model whole words
- They all ignore sub-word structures

FastText Model

- All models presented so far, model whole words
- They all ignore sub-word structures
- Many languages have distinct structures for words

FastText Model

- All models presented so far, model whole words
- They all ignore sub-word structures
- Many languages have distinct structures for words
- Many word forms occur rarely even in large corpora, preventing learning good representations for them

FastText Model

- Use character n-grams

FastText Model

- Use character n-grams
- E.g. Where is modeled as (<wh,whe,her,ere,re $>,<$ where $>$)

FastText Model

- Use character n-grams
- E.g. Where is modeled as (<wh,whe,her,ere,re $>,<$ where $>$)
- $s(w, c)=\sum_{g \in G_{w}} z_{g}^{T} v_{c}$

FastText Model

- Use character n-grams
- E.g. Where is modeled as (<wh,whe,her,ere,re $>,<$ where $>$)
- $s(w, c)=\sum_{g \in G_{w}} z_{g}^{T} v_{c}$
- $P(c \mid w)=\frac{\exp ^{s(w, c)}}{\sum_{j=1}^{V} \exp ^{s(w, j)}}$

