Representing Words with Vectors

Giri Iyengar

Cornell University

gi43@cornell.edu

Feb 21, 2018

Giri Iyengar (Cornell Tech)

Representing Words with Vectors

Feb 21, 2018 1 / 29

3

< 回 > < 三 > < 三 >

Agenda for the day

- Learning Word Representations
- GloVe model
- Skip-Grams
- CBOW
- FastText

A D N A B N A B N A B N

Overview

Learning Word Representations

- Skip-gram Model

A D N A B N A B N A B N

- Number of words in human language are far too numerous
- One-hot encoding doesn't capture relationships between words
- Compact representations would make the math work easier / training models easier
- Would be useful to capture Synonyms / Homonyms / Antonyms in these representations
- Would be useful to capture other relationships (e.g. King:Queen :: Man:Woman)

- 4 回 ト 4 三 ト 4 三 ト

Word Representations: Some Assumptions

- Words that appear in similar contexts have similar meaning
- Co-occurrence of words convey meaning / structure of language
- Sub-word structures exist in languages

Word Representations

Goal

If we convert words into vectors in such a way that words with similar meanings will have vectors that lie nearby; Further if we can do vector arithmetic on them, it would be great. E.g. King - Man + Woman = Queen

Representing Words by Vectors

We want to do something like: King $\rightarrow (0.3, 0.9, 0.9, 0.2),$ Queen $\rightarrow (0.3, 0.9, 0.1, 0.2)$ etc

Giri Iyengar (Cornell Tech)

Representing Words with Vectors

Feb 21, 2018 7 / 29

イロト 不得 トイヨト イヨト 二日

Word Representations

Representing Words with Vectors

Feb 21, 2018 8 / 29

э

イロト イヨト イヨト イヨト

Overview

Q GloVe model

3 Skip-gram Model

4 CBOW model

イロト イヨト イヨト イヨト

GloVe: Global Vectors for Word Representations

Pr. and Ratio	k=solid	k=gas	k=water	k=fashion
P(k ice)	1.9E - 4	6.6E - 5	3.0E - 3	1.7E - 5
P(k steam)	2.2E - 5	7.8E - 4	2.2E - 3	1.8E - 5
P(k ice)/P(k steam)	8.9	8.5E - 2	1.36	0.96

Table: Co-occurrence Probabilities and their ratios from a 6 Billion word corpus

< □ > < 同 > < 回 > < 回 > < 回 >

• Perhaps model a pair of words and their context as $F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}$, where w is the vector representation we desire

• • = • • = •

- Perhaps model a pair of words and their context as $F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}$, where w is the vector representation we desire
- Futher, we want F to encode vector arithmetic, suggesting $F(w_i-w_j,\tilde{w}_k)=\frac{P_{ik}}{P_{jk}}$

- Perhaps model a pair of words and their context as $F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}$, where w is the vector representation we desire
- Futher, we want F to encode vector arithmetic, suggesting $F(w_i-w_j,\tilde{w}_k)=\frac{P_{ik}}{P_{jk}}$
- We also want to keep things linear, if possible: $F((w_i-w_j)^T\tilde{w}_k)=\frac{P_{ik}}{P_{jk}}$

- Perhaps model a pair of words and their context as $F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}$, where w is the vector representation we desire
- Futher, we want F to encode vector arithmetic, suggesting $F(w_i-w_j,\tilde{w}_k)=\frac{P_{ik}}{P_{jk}}$
- We also want to keep things linear, if possible: $F((w_i w_j)^T \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}$
- The distinction between w and \tilde{w} is arbitrary. Applying Homomorphism: $F((w_i - w_j)^T \tilde{w}_k) = \frac{F(w_i^T \tilde{w}_k)}{F(w_j^T \tilde{w}_k)}$

くぼう くほう くほう しほ

• This suggests: $F(w_i^T \tilde{w_k}) = P_{ik}$

► • ≣ ► ঊ ∽ ৭ে Feb 21, 2018 12 / 29

イロト イボト イヨト イヨト

- This suggests: $F(w_i^T \tilde{w_k}) = P_{ik}$
- One solution: $w_i^T \tilde{w_k} = \log(P_{ik}) = \log(X_{ik}) \log(X_i)$, where X_{ik} is the co-occurrence count

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- This suggests: $F(w_i^T \tilde{w_k}) = P_{ik}$
- One solution: $w_i^T \tilde{w}_k = \log(P_{ik}) = \log(X_{ik}) \log(X_i)$, where X_{ik} is the co-occurrence count
- You can make this a *completely* symmetric model by introducing appropriate bias: $w_i^T \tilde{w_k} + b_i + \tilde{b}_k = \log(X_{ik})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- This suggests: $F(w_i^T \tilde{w_k}) = P_{ik}$
- One solution: $w_i^T \tilde{w}_k = \log(P_{ik}) = \log(X_{ik}) \log(X_i)$, where X_{ik} is the co-occurrence count
- You can make this a *completely* symmetric model by introducing appropriate bias: w_i^T w_k + b_i + b_k = log(X_{ik})
- When $X_{ik} = 0$, this is ill-defined.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- This suggests: $F(w_i^T \tilde{w_k}) = P_{ik}$
- One solution: $w_i^T \tilde{w}_k = \log(P_{ik}) = \log(X_{ik}) \log(X_i)$, where X_{ik} is the co-occurrence count
- You can make this a *completely* symmetric model by introducing appropriate bias: w_i^T w_k + b_i + b_k = log(X_{ik})
- When $X_{ik} = 0$, this is ill-defined.
- Introduce a weighting function $f(X_{ik})$, giving us a new loss function to minimize:

- This suggests: $F(w_i^T \tilde{w_k}) = P_{ik}$
- One solution: $w_i^T \tilde{w}_k = \log(P_{ik}) = \log(X_{ik}) \log(X_i)$, where X_{ik} is the co-occurrence count
- You can make this a *completely* symmetric model by introducing appropriate bias: w_i^T w_k + b_i + b_k = log(X_{ik})
- When $X_{ik} = 0$, this is ill-defined.
- Introduce a weighting function $f(X_{ik})$, giving us a new loss function to minimize:

•
$$J = \sum_{i,k}^{V} f(X_{ik}) (w_i^T \tilde{w}_k + b_i + \tilde{b}_k - \log(X_{ik}))^2$$

Feb 21, 2018 13 / 29

э

通 ト イ ヨ ト イ ヨ ト

Overview

Learning Word Representations

2 GloVe model

Giri Iyengar (Cornell Tech)

イロト イヨト イヨト イヨト

Predict a context word, given an input word

Given *brown*, what is the probability that *the*, *quick*, *fox*, *jumps* appear in its neighborhood in a sentence

Giri Iyengar (Cornell Tech)

Representing Words with Vectors

Feb 21, 2018 15 / 29

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Giri Iyengar (Cornell Tech)

Representing Words with Vectors

Feb 21, 2018 16 / 29

Source Text	Training Samples
The quick brown fox jumps over the lazy dog. \Longrightarrow	(the, quick) (the, brown)
The quick brown fox jumps over the lazy dog. \Longrightarrow	(quick, the) (quick, brown) (quick, fox)
The quick brown fox jumps over the lazy dog. \Longrightarrow	(brown, the) (brown, quick) (brown, fox) (brown, jumps)
The quick brown fox jumps over the lazy dog. \implies	(fox, quick) (fox, brown) (fox, jumps) (fox, over)

Skip-gram Model Training

•
$$P(w_c|w_t) = \frac{\exp^{s(w_t,w_c)}}{\sum_{j=1}^{V} \exp^{s(w_t,w_j)}}$$

• Online training, using SGD

2

- Consider special n-grams as single words: New York, Boston Globe
- Negative sampling to selectively at random update a few negative samples. Frequent words have a higher chance of being selected for negative sampling
- Sub-sample frequent words

< □ > < □ > < □ > < □ > < □ > < □ >

Graph for (sqrt(x/0.001)+1)*0.001/x

Figure: Plot of word frequency and Probability of keeping. Empirically obtained

Giri Iyengar (Cornell Tech)

Representing Words with Vectors

Feb 21, 2018 20 / 29

< <p>A

Overview

Learning Word Representations

2 GloVe model

3 Skip-gram Model

FastText

3

<ロト < 四ト < 三ト < 三ト

Instead of predicting the *context*, predict the *target* given the context
Given (the, quick, fox, jumps), predict brown

। । । २०१३ । २०२० Feb 21, 2018 22 / 29

< □ > < □ > < □ > < □ > < □ > < □ >

Feb 21, 2018 23 / 29

2

<ロト < 四ト < 三ト < 三ト

- Works better than Skip-gram when corpus is smaller
- Embeddings are averaged across the context, perhaps resulting in more stable representations

< □ > < □ > < □ > < □ > < □ > < □ >

CBOW

INPUT PR

PROJECTION OUTPUT

Skip-gram

<ロト < 四ト < 三ト < 三ト

Feb 21, 2018 25 / 29

Overview

Learning Word Representations

- 2 GloVe model
- 3 Skip-gram Model
- 4 CBOW model

<ロト < 四ト < 三ト < 三ト

• All models presented so far, model whole words

। २३२२ ३ २००० Feb 21, 2018 27 / 29

A D N A B N A B N A B N

- All models presented so far, model whole words
- They all ignore sub-word structures

< □ > < 同 > < 回 > < 回 > < 回 >

- All models presented so far, model whole words
- They all ignore sub-word structures
- Many languages have distinct structures for words

・ 何 ト ・ ヨ ト ・ ヨ ト

- All models presented so far, model whole words
- They all ignore sub-word structures
- Many languages have distinct structures for words
- Many word forms occur rarely even in large corpora, preventing learning good representations for them

• Use character n-grams

Feb 21, 2018 28 / 29

3

<ロト < 四ト < 三ト < 三ト

- Use character n-grams
- E.g. Where is modeled as (<wh,whe,her,ere,re>,<where>)

イロト 不得下 イヨト イヨト

- Use character n-grams
- E.g. Where is modeled as (<wh,whe,her,ere,re>,<where>)

•
$$s(w,c) = \sum_{g \in G_w} z_g^T v_c$$

イロト 不得下 イヨト イヨト

- Use character n-grams
- E.g. Where is modeled as (<wh,whe,her,ere,re>,<where>)

•
$$s(w,c) = \sum_{g \in G_w} z_g^T v_c$$

• $P(c|w) = \frac{\exp^{s(w,c)}}{\sum_{j=1}^V \exp^{s(w,j)}}$

イロト 不得下 イヨト イヨト

Giri Iyengar (Cornell Tech)

Representing Words with Vectors

Feb 21, 2018 29 / 29