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Agenda for the day

@ Learning Word Representations
@ GloVe model

@ Skip-Grams

o CBOW

o FastText
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Overview

@ Learning Word Representations
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Word Representations

Number of words in human language are far too numerous

One-hot encoding doesn't capture relationships between words

Compact representations would make the math work easier / training
models easier

Would be useful to capture Synonyms / Homonyms / Antonyms in
these representations

Would be useful to capture other relationships (e.g. King:Queen ::
Man:Woman)
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Word Representations: Some Assumptions

@ Words that appear in similar contexts have similar meaning
e Co-occurrence of words convey meaning / structure of language

@ Sub-word structures exist in languages
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Word Representations

If we convert words into vectors in such a way that words with similar
meanings will have vectors that lie nearby; Further if we can do vector
arithmetic on them, it would be great. E.g. King - Man + Woman =
Queen
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Word Representations

Representing Words by Vectors

We want to do something like: King — (0.3,0.9,0.9,0.2), Queen
— (0.3,0.9,0.1,0.2) etc
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Overview

© GloVe model
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GloVe: Global Vectors for Word Representations

Pr. and Ratio k=solid k=gas k=water | k=fashion

P(klice) 19F -4 | 66E—-5|30E—-3| 1L.7TE—-5

P(k|steam) 22E—-5 | 7T8E—4|22FE—-3 | 1.8E -5
P(k|ice)/P(k|steam) 8.9 85E —2 1.36 0.96
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GloVe model motivation

@ Perhaps model a pair of words and their context as

~ N _ Py . . .
F(w;, wj, wy) = P where w is the vector representation we desire
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GloVe model motivation

@ Perhaps model a pair of words and their context as
F(w;, wj, wy) = ;?i, where w is the vector representation we desire
J

@ Futher, we want F' to encode vector arithmetic, suggesting
- P,
F(wl - w]awk) = P,
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GloVe model motivation

@ Perhaps model a pair of words and their context as
F(w;, wj, wy) = 113?2, where w is the vector representation we desire
J

@ Futher, we want F' to encode vector arithmetic, suggesting
F(w; —wj,wy,) = f,;’_

@ We also want to keep things linear, if possible:
F((wi —wj)Ty) = Bt
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GloVe model motivation

@ Perhaps model a pair of words and their context as

F(w;, wj, wy) = ;?2, where w is the vector representation we desire
J
@ Futher, we want F' to encode vector arithmetic, suggesting
- P,
F(wl - w]awk) = P,

@ We also want to keep things linear, if possible:

F((wi —w;)"dx) = 5%

@ The distinction between w and w is arbitrary. Applying
)Tu~} ) _ Fwl'wy)
k)= Flwl )

Homomorphism: F((w; — w;
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GloVe model motivation

o This suggests: F'(w! ) = Py
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GloVe model motivation

o This suggests: F(wlw) = P,
@ One solution: w! Wy, = log(Py) = log(Xix) — log(X;), where Xy, is
the co-occurrence count
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GloVe model motivation

o This suggests: F(wlw) = P,
@ One solution: w! Wy, = log(Py) = log(Xix) — log(X;), where Xy, is
the co-occurrence count

@ You can make this a completely symmetric model by introducing
appropriate bias: wfwk + b; + by, = log(X1)
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@ One solution: w! Wy, = log(Py) = log(Xix) — log(X;), where Xy, is
the co-occurrence count

@ You can make this a completely symmetric model by introducing
appropriate bias: wfwk + b; + by, = log(X1)
@ When X, = 0, this is ill-defined.
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GloVe model motivation

o This suggests: F(wlw) = P,
@ One solution: w! Wy, = log(Py) = log(Xix) — log(X;), where Xy, is
the co-occurrence count

@ You can make this a completely symmetric model by introducing
appropriate bias: wfwk + b; + by, = log(X1)
@ When X, = 0, this is ill-defined.

@ Introduce a weighting function f(X;), giving us a new loss function
to minimize:
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GloVe model motivation

o This suggests: F'(w! ) = Py
@ One solution: w! Wy, = log(Py) = log(Xix) — log(X;), where Xy, is
the co-occurrence count

@ You can make this a completely symmetric model by introducing
appropriate bias: wiTtﬁk + b; + by, = log(X1)
@ When X, = 0, this is ill-defined.

@ Introduce a weighting function f(X;), giving us a new loss function
to minimize:

o J =1 f(Xin) (g, + b; + by, — log(Xir))?

Giri lyengar (Cornell Tech) Representing Words with Vectors Feb 21, 2018 12 /29



- GloVe weighting function f, x_max=100, alpha=0.75

10

fix}

05 8

0 100 200 300 400 500
[inverse distance-) co-occurmence value x

0.0

Giri lyengar (Cornell Tech) Representing Words with Vectors Feb 21, 2018 13 /29



Overview

© Skip-gram Model
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Skip-gram Model

Predict a context word, given an input word

Given brown, what is the probability that the, quick, fox, jumps appear in
its neighborhood in a sentence
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Input Vector

A1’ in the position
corresponding to the —»
"

word “ant:

[e[oEo]eo]e]e]]

(o]

10,000
positions
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Output Layer
Softmax Classifier
Hidden Layer
Linear Neurons

300 neurons

10,000
neurons
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Probability that the word at a
randomly chosen, nearby
position is “abandon”

.. “ability”

.. “able”

. "zone”
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Training
Samples

fox jumps over the lazy dog. == (the, quick)

(the, brown)

The Jjumps over the lazy dog. == (quick, the)

(quick, brown)
(quick, fox)

Source Text

| The|quick-fox|jumps|over the lazy dog. == (brown, the)
(brown, quick)

(brown, fox)

(brown, jumps)

The| quick| brown - jumps| over | the lazy dog. == (fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)
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Skip-gram Model Training

exps (e we)

v s(wg,wj)
S, e

o P(welwy) =

@ Online training, using SGD
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Skip-gram Model Training

o Consider special n-grams as single words: New York, Boston Globe

@ Negative sampling to selectively at random update a few negative
samples. Frequent words have a higher chance of being selected for
negative sampling

@ Sub-sample frequent words
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Graph for (sqrt(x/0.001)+1)*0.001/x

x:0.002537675  y:1.02180467

0.01 002 0.03 0.04 005 0.08 0.07 0.08 0.09 0.1

Figure: Plot of word frequency and Probability of keeping. Empirically obtained
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Overview

@ CBOW model

Giri lyengar (Cornell Tech) Representing Words with Vectors Feb 21, 2018 21 /29



CBOW Model

@ Instead of predicting the context, predict the target given the context

e Given (the, quick, fox, jumps), predict brown

Giri lyengar (Cornell Tech) Representing Words with Vectors Feb 21, 2018 22 /29



INPUT PROJECTION OUTPUT

wit-2)

wit-1)

¥
=

wilt+1)

wit+2)

CBOW
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CBOW Model

@ Works better than Skip-gram when corpus is smaller

@ Embeddings are averaged across the context, perhaps resulting in
more stable representations
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INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

w(t-2) w(t-2)

w(t-1) wi(t-1)
’—» w(t) w(t) ’—»‘

w(t+1) x‘\ w(t+1)

w(t+2) w(t+2)

cBow Skip-gram
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Overview

© FastText

Giri lyengar (Cornell Tech) Representing Words with Vectors Feb 21, 2018 26 / 29



FastText Model

@ All models presented so far, model whole words
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FastText Model

@ All models presented so far, model whole words

@ They all ignore sub-word structures
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FastText Model

@ All models presented so far, model whole words
@ They all ignore sub-word structures

@ Many languages have distinct structures for words
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FastText Model

@ All models presented so far, model whole words
@ They all ignore sub-word structures
@ Many languages have distinct structures for words

@ Many word forms occur rarely even in large corpora, preventing
learning good representations for them
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FastText Model

@ Use character n-grams
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FastText Model

@ Use character n-grams
e E.g. Where is modeled as (<wh,whe,her,ere,re>,<where>)
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FastText Model

@ Use character n-grams
e E.g. Where is modeled as (<wh,whe,her,ere,re>,<where>)

o s(w,c) =3 cq, ngUC
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FastText Model

@ Use character n-grams
e E.g. Where is modeled as (<wh,whe,her,ere,re>,<where>)
o s(w,c) =3 cq, ngUC

- eXps(w,c)
o P(C’w) - Z;/:l exps(w,j)
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