
Representing Words with Vectors

Giri Iyengar

Cornell University

gi43@cornell.edu

Feb 21, 2018

Giri Iyengar (Cornell Tech) Representing Words with Vectors Feb 21, 2018 1 / 29



Agenda for the day

Learning Word Representations
GloVe model
Skip-Grams
CBOW
FastText
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Word Representations

Number of words in human language are far too numerous
One-hot encoding doesn’t capture relationships between words
Compact representations would make the math work easier / training
models easier
Would be useful to capture Synonyms / Homonyms / Antonyms in
these representations
Would be useful to capture other relationships (e.g. King:Queen ::
Man:Woman)
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Word Representations: Some Assumptions

Words that appear in similar contexts have similar meaning
Co-occurrence of words convey meaning / structure of language
Sub-word structures exist in languages
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Word Representations

Goal
If we convert words into vectors in such a way that words with similar
meanings will have vectors that lie nearby; Further if we can do vector
arithmetic on them, it would be great. E.g. King - Man + Woman =
Queen
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Word Representations

Representing Words by Vectors
We want to do something like: King → (0.3, 0.9, 0.9, 0.2), Queen
→ (0.3, 0.9, 0.1, 0.2) etc
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Word Representations
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GloVe: Global Vectors for Word Representations

Pr. and Ratio k=solid k=gas k=water k=fashion
P (k|ice) 1.9E − 4 6.6E − 5 3.0E − 3 1.7E − 5

P (k|steam) 2.2E − 5 7.8E − 4 2.2E − 3 1.8E − 5
P (k|ice)/P (k|steam) 8.9 8.5E − 2 1.36 0.96

Table: Co-occurrence Probabilities and their ratios from a 6 Billion word corpus
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GloVe model motivation

Perhaps model a pair of words and their context as
F (wi, wj , w̃k) = Pik

Pjk
, where w is the vector representation we desire

Futher, we want F to encode vector arithmetic, suggesting
F (wi − wj , w̃k) = Pik

Pjk

We also want to keep things linear, if possible:
F ((wi − wj)T w̃k) = Pik

Pjk

The distinction between w and w̃ is arbitrary. Applying
Homomorphism: F ((wi − wj)T w̃k) = F (wT

i w̃k)
F (wT

j w̃k)
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GloVe model motivation

This suggests: F (wT
i w̃k) = Pik

One solution: wT
i w̃k = log(Pik) = log(Xik)− log(Xi), where Xik is

the co-occurrence count
You can make this a completely symmetric model by introducing
appropriate bias: wT

i w̃k + bi + b̃k = log(Xik)
When Xik = 0, this is ill-defined.
Introduce a weighting function f(Xik), giving us a new loss function
to minimize:
J =

∑V
i,k f(Xik)(wT

i w̃k + bi + b̃k − log(Xik))2
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Skip-gram Model

Predict a context word, given an input word
Given brown, what is the probability that the, quick, fox, jumps appear in
its neighborhood in a sentence
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Skip-gram Model Training

P (wc|wt) = exps(wt,wc)∑V

j=1 exps(wt,wj )

Online training, using SGD
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Skip-gram Model Training

Consider special n-grams as single words: New York, Boston Globe
Negative sampling to selectively at random update a few negative
samples. Frequent words have a higher chance of being selected for
negative sampling
Sub-sample frequent words
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Figure: Plot of word frequency and Probability of keeping. Empirically obtained
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CBOW Model

Instead of predicting the context, predict the target given the context
Given (the, quick, fox, jumps), predict �brown
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CBOW Model

Works better than Skip-gram when corpus is smaller
Embeddings are averaged across the context, perhaps resulting in
more stable representations
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FastText Model

All models presented so far, model whole words

They all ignore sub-word structures
Many languages have distinct structures for words
Many word forms occur rarely even in large corpora, preventing
learning good representations for them
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FastText Model

Use character n-grams

E.g. Where is modeled as (<wh,whe,her,ere,re>,<where>)
s(w, c) =

∑
g∈Gw

zT
g vc

P (c|w) = exps(w,c)∑V

j=1 exps(w,j)
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