Deep Learning Architectures

Giri Iyengar

Cornell University

gi43@cornell.edu

Feb 14, 2018

Giri Iyengar (Cornell Tech)

Deep Learning Architectures

Feb 14, 2018 1 / 24

3

A D N A B N A B N A B N

Agenda for the day

- Deep Learning Architectures
- Convolutional Neural Nets
- Stacked denoising Auto Encoders
- Recurrent Neural Networks
- Sequence to Sequence models

→ ∃ →

Overview

Deep Learning Architectures

Giri Iyengar (Cornell Tech)

Deep Learning Architectures

3 Feb 14, 2018 3 / 24

< □ > < □ > < □ > < □ > < □ >

Quick Recap - Neuron

Giri Iyengar (Cornell Tech)

Deep Learning Architectures

Feb 14, 2018 4 / 24

- Deep Learning Tutorials
- PyTorch Tutorials
- Plus many more on GitHub, Caffe, TensorFlow etc

< □ > < 同 > < 回 > < 回 > < 回 >

- Biologically-inspired variants of MLP
- Encode a notion of a visual receptive field in the network
- Exploit local correlations by enforcing connectivity between adjacent layers
- Shared weights / replicated units greatly reduces the number of parameters

CNN Architecture – Typical

Giri Iyengar (Cornell Tech)

Deep Learning Architectures

≣▶ ◀ ≣▶ ≣ ∽Ω< Feb 14, 2018 7 / 24

< □ > < □ > < □ > < □ > < □ >

Convolutional Filter

Giri Iyengar (Cornell Tech)

Feb 14, 2018 8 / 24

3

イロト イポト イヨト イヨト

Pooling Layer

6	8
3	4

< □ > < □ > < □ > < □ > < □ >

 ►
 ■
 ■
 ●
 Q
 C

 Feb 14, 2018
 9 / 24

Dropouts/DropConnects

- Randomly sets a fraction of the inputs to zero during training time
- Forces the weights in the network to not rely on neighboring nodes
- A type of **Regularization**

Nonlinearities that are commonly used

- ReLU Rectified Linear Unit
- Softplus
- Tanh, sigmoid, softmax, leaky and noisy variants of ReLU

CNN Architecture – Typical

Giri Iyengar (Cornell Tech)

Deep Learning Architectures

Feb 14, 2018 12 / 24

3

<ロト <問ト < 目と < 目と

denoising Autoencoders

Autoencoders

- $\mathbf{X} \in [0,1]^d$ and *encodes* using hidden representation y = s(WX + b), s is some non-linearity
- y or the code can then be decoded back $\mathbf{Z}=s(W^{'}y+b^{'})$
- If we constrain W' to be W^T , it is called *tied weights*

denoising Autoencoders

In order to force the autoencoder to become robust to noise and learn good representations of \mathbf{X} , train the autoencoder with *corrupted* versions of \mathbf{X} . denoising Autoencoder is a stochastic version of regular autoencoder.

イロト 不得下 イヨト イヨト 二日

denoising Autoencoders

Giri Iyengar (Cornell Tech)

Deep Learning Architectures

- 2 Feb 14, 2018 14 / 24

Stacked denoising Autoencoders

Giri Iyengar (Cornell Tech)

Deep Learning Architectures

Feb 14, 2018 15 / 24

3

イロト イヨト イヨト

Recurrent Neural Networks

RNN

Recurrent because Hidden Layer is connected onto itself

Giri Iyengar (Cornell Tech)

Deep Learning Architectures

Feb 14, 2018 16 / 24

< □ > < 同 > < 回 > < 回 > < 回 >

RNN

"]" "" "o" target chars: "e" 1.0 0.5 0.1 0.2 **2.2** -3.0 0.3 0.5 -1.5 output layer -1.0 1.9 -0.1 4.1 1.2 -1.1 2.2 W_hy 0.3 1.0 0.1 -0.3 W hh hidden layer -0.1 -0.5 0.9 0.3 0.9 0.1 -0.3 0.7 W_xh 0 0 0 000 1 0 0 input layer 0 1 1 0 0 0 0

Giri Iyengar (Cornell Tech)

input chars:

"h"

Deep Learning Architectures

"e"

"]"

"]"

RNN

Feb 14, 2018 18 / 24

3

<ロト <問ト < 目と < 目と

LSTM

Motivation for LSTM

In a regular RNN, the transition matrix weights (connecting hidden layer to itself) has a large impact on the learning rate – as that matrix is used in several gradient computations. Depending on the weight matrix, you either have **vanishing** gradients or **exploding** gradients. Vanishing gradients are the more common problem.

LSTM (Long Short Term Memory) cells try to mitigate this vanishing gradients with gating functions. Instead of $s_t = g(W_h s_{t-1} + W_i x_t)$, we have a more complex function connecting the output state at time t with current input and previous state.

イロト 不得下 イヨト イヨト 二日

LSTM

Giri Iyengar (Cornell Tech)

Deep Learning Architectures

Feb 14, 2018 20 / 24

LSTM

- Input gate determines how much of an input does it allow to pass through. Input is $s_t = g(W_h s_{t-1} + W_i x_t)$.
- Forget gate is a new path that determines how much of the previous state is allowed to be carried through
- Output gate determines how much of the internal state does it expose to the external world

LSTM

If you set the input gates to all 1s, forget gates to all 0s, and output gates to all 1s, you get a regular RNN. RNN is a special case of LSTM

< □ > < □ > < □ > < □ > < □ > < □ >

Sequence to Sequence Models

Sequence to Sequence Models

Just a RNN. Each rectangular block is a LSTM unit. You feed it sentences in one language and it produces sentences in another language.

Giri lyengar (Cornell Tech)

Deep Learning Architectures

Feb 14, 2018 22 / 24

- Very active field
- New architectures / New applications emerging daily
- Very rapid progress in the last 2-3 years
- Some basic principles are understood. But is still a bit of the Wild West!

(4) (日本)

Giri Iyengar (Cornell Tech)

Deep Learning Architectures

Feb 14, 2018 24 / 24