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Machine Learning

Typically 3 different types of tasks
Regression: y = f(x), y ∈ R
Classification: y = f(x), y ∈ Ω
Unsupervised Learning: Infer hidden structured of unlabeled data
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Machine Learning: Common Considerations

Training Dataset
Validation of the model. What cost function?
Test Data
Dealing with Model Complexity
Tuning parameters
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kNN Regression

One of the simplest models. Can be used as a classifier too.
Regresses/Classifies every new point by querying k Nearest Neighbors
Returns average prediction (for regression) or majority vote (for
classification)
Has strong consistency proofs
What are some design factors with this approach?
Any issues/problems?
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Linear Regression

Figure: Simple Linear Regression
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Linear Regression

y = β0 + β1x1 + β2x2 + . . .+ βkxk

RMSE:
√

1
N

∑N
i=1(yi − ŷi)2)

When does the error reach its minimum?
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Kernels: Cubic Spline Interpolation

Figure: Cubic Interpolation. Courtesy Scipy
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Kernel Regression

Given (xi, yi), i = 1, . . . , n
Formulate yi = r(xi) + εi

Goal is to estimate r(x) with r̂(x)
r̂(x) =

∑n
i=1w(xi, x) · yi

We need to choose the set of weights w. Both kNN and Linear
Regression are special cases of this
Many choices for kernels. E.g. Cubic Splines, Gaussian, Box
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Naive Bayes

Figure: Naive Bayes Classifier
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Naive Bayes

Naive because it assumes all features are independent
P (Ci|x1, . . . , xn) ∝ P (Ci)×

∏n
k=1 P (xk|Ci)

ŷ = argmaxiP (Ci)×
∏n
k=1 P (xk|Ci)

To learn the model, all you have to do is to learn the individual
feature distributions
Requires much less data compared to other models that make better
structural assumptions
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Logistic Regression

Goal: y = f(x), y ∈ Ω
Want to keep things linear, if possible
That is, We prefer something like y = W tx or close to it
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Backstory of Logistic Regression

It was discovered back in 19th century when mathematicians tried to
explain observed population growth
It fits very well with observed population growths of countries (e.g.
US, Belgium, France)
In the 60s, it was discovered again and was fitted to populations of
fruit flies, cantaloupes, Humans in North Africa etc
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Logistic Regression

Y = W tx results in a linear function
Assume Y ∼ B(P (Y = 1|x)), where B is a Bernoulli distribution
That is, Y takes values {0, 1} with probability {p, 1− p} respectively
We can write this as Y ∼ pk(1− p)1−k, k ∈ {0, 1}
The Logistic Regression Model: ln(P (Y=1|x)

P (Y=0|x)) = W tx

Giri Iyengar (Cornell Tech) ML Quick Primer Jan 29, 2018 17 / 37



Logistic Regression

The Logistic Regression Model: ln(P (Y=1|x)
P (Y=0|x)) = W tx

Why does this make sense?
We want a linear combination of features. That explains W tx
We need to turn that linear combination which can take any real
value in something takes ranges between 0 and 1
P (Y=1|x)
P (Y=0|x) , is the odds-ratio (is positive real number)
Log of the odds-ratio converts this positive value into a proper real
number!
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Logistic Regression Formula

The Logistic Regression Model: ln(P (Y=1|x)
P (Y=0|x)) = W tx

From this, we get P (Y=1|x)
P (Y=0|x) = eW

tx

P (Y = 1|x) = eW tx

1+eW tx

Giri Iyengar (Cornell Tech) ML Quick Primer Jan 29, 2018 19 / 37



Fitting the Logistic Model

We need to learn W , the weights that explain the data best
We’ll use Maximum Likelihood approach to fit the model
P (Y1 = y1, Y2 = y2, . . . , Yn = yn|W,x1,x2, . . . ,xn) is what we are
trying to maximize
iid assumption. Each data point is independent. Class depends only
on that data point
L(W ) =

∏
i P (Yi = yi|W,xi)

W ∗ = argmaxW logL(W ). Log because it converts the
∏

to a
∑

and it doesn’t affect the argmax
Let’s assume that yi = {−1, 1}. This simplifies the next steps
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Fitting the Logistic Model

If yi = 1, we will use P (Y = 1|W,xi) = eW tx

1+eW tx = 1
1+e−yiW xi

If yi = −1, we will use
1− P (Y = 1|W,xi) = 1− eW tx

1+eW tx = 1
1+e−yiW xi

W ∗ = argmaxW logL(W ) = argminW
∑
i log(1 + e−yiW

txi)
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Support Vector Machines
Let’s start with some intuition. We want to separate the two classes.
Which is a better classifier?

Figure: Separating Hyperplanes. Image courtesy: Zack Weinberg
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Support Vector Machines

Define margin as yif(xi). So, margin is positive if we are on the
correct side of the decision boundary
We want all examples as far away from the boundary as possible.
Margin as large as possible
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Support Vector Machines

Figure: Separating Hyperplanes. Image courtesy: Cyc

Note: They conventionally add an intercept term, but it can be swept into
x by assuming x0 = 1.
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Support Vector Machines

As in Logistic Regression, the function that we fit is linear
f(x) =

∑m
j=1wjxj + b

We classify samples by looking at the sign of f(x)
Support vector machines maximize the minimum margin
With some math (Hastie 2001), it is equivalent to minimizing ||W ||
subject to a constraint yi(Wxi + b) ≥ 1
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Support Vector Machines

In real-life, the classes are not always separable. They overlap. So, we
end up with a loss minimization scenario
φ(W ) = 1

2 ||W ||
2 + γ

2
∑N
i=1 L(yi,Wxi + b)

Minimize the above function, given some Loss function L() and
user-defined regularization parameter γ
Hinge Loss: max{0, 1− yif(xi)}
Leads to minimizing 1

2 ||W ||
2 + γ

2
∑N
i=1 ζi, ζi are non-negative

The constraint is modified to yi(Wxi + b) ≥ 1− ζi
We try to reduce the mis-classification by holding

∑
i ζi ≤ C

Giri Iyengar (Cornell Tech) ML Quick Primer Jan 29, 2018 26 / 37



Support Vector Machines

SVMs were very successful. Some of the best classifiers of their times
Turns out that you can generalize by applying a kernel to each x and
transform to a high dimensional space
Relatively slow to train and with the emergence of Big Data, started
falling out of favor
Deep Learning models (see later) offer better performance and are
trainable using simpler algorithms
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Ensemble Methods

So far, we looked at individual classifiers
These classifiers are what are called as Strong learners
An alternative approach is to take a collection of much simpler
techniques and combine them in intelligent ways to build a Strong
ensemble
Wisdom of the crowds approach
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Random Forests

Given a dataset of size N, sample N cases at random, with
replacement
This sample is used to build a decision tree
From M features randomly select m, such that m << M

Using these m variables, and the bootstrapped data sample, build a
decision tree
Repeat the above procedure several hundreds of times
The collection of decision trees you get is the Random Forest
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Random Forests: Decision Tree

Figure: Decision Tree Example
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Random Forests: Design considerations

How many features per tree? Typically m ≈
√

(M)
How many trees?
How to split the nodes? Information Gain / Gini Impurity
Gini:

∑m
j=1 fj(1− fj)

Info Gain: −
∑m
j=1 fj log2 fj
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Random Forests

They are very competitive amongst current algorithms
Runs efficiently on large data sets
Thousands of input variables can be handled
As a by-product, we find out what variables are important for
classification
Offers an approach to detect and handle with variable interactions
They tend not to overfit
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Gradient Boosting Machines

Assume you have a regression problem: y = f(x)
We minimize the mean squared prediction error: (ŷ − y)2 to learn a
model
Assume you have a model f1(x), can you improve it?
Try and build f2(x) = f1(x) + h(x) = y

Or, h(x) = y − f1(x). In general, we learn an
fm+1(x) = fm(x) + h(x)
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Gradient Boosting Machines

Observe that the residual y − fm(x) is the negative gradient of
1
2(y − fm(x))2

So, gradient boosting machines are simply gradient descent algorithms
We generalize this idea to other loss functions and we get GBMs
f0(x) = argminγ

∑
i L(yi, γ). Essentially learn a constant that

minimizes the loss
fm(x) = fm−1(x) + argminh∈H

∑
i L(yi, fm−1(x) + h(x))

That is a hard problem. So, we simplify by taking a step in the
direction of the gradient
fm(x) = fm−1(x)− γm

∑
i∇hL(yi, fm(xi))
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Weekly Reading

http://www.deeplearningbook.org/contents/ml.html

http://www.ats.ucla.edu/stat/mult_pkg/faq/general/odds_
ratio.htm

https://en.wikipedia.org/wiki/Odds_ratio

https://en.wikipedia.org/wiki/Support_vector_machine

https://en.wikipedia.org/wiki/Random_forest

http://www.ccs.neu.edu/home/vip/teach/MLcourse/4_
boosting/slides/gradient_boosting.pdf
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