Quick Primer on Machine Learning: Supervised Learning

Giri Iyengar

Cornell University

gi43@cornell.edu

Jan 29, 2018

Giri Iyengar (Cornell Tech)

ML Quick Primer

Jan 29, 2018 1 / 37

• • = • • =

Overview

Machine Learning

Regression

- kNN
- Linear Regression
- Kernel Regression

3 Classification

- Naive Bayes
- Logistic Regression
- Support Vector Machines
- Random Forests
- Gradient Boosting Machines
- Assignments, Weekly Reading

- E

Overview

Machine Learning

Regression

- kNN
- Linear Regression
- Kernel Regression

3 Classification

- Naive Bayes
- Logistic Regression
- Support Vector Machines
- Random Forests
- Gradient Boosting Machines

Assignments, Weekly Reading

< □ > < 同 > < 回 > < 回 > < 回 >

- Typically 3 different types of tasks
- Regression: $y = f(\mathbf{x}), y \in \mathbb{R}$
- Classification: $y = f(\mathbf{x}), y \in \Omega$
- Unsupervised Learning: Infer hidden structured of unlabeled data

< □ > < 同 > < 回 > < 回 > < 回 >

Machine Learning: Common Considerations

- Training Dataset
- Validation of the model. What cost function?
- Test Data
- Dealing with Model Complexity
- Tuning parameters

A (10) × A (10) × A (10)

Overview

Machine Learning

Regression

- kNN
- Linear Regression
- Kernel Regression

Classification

- Naive Bayes
- Logistic Regression
- Support Vector Machines
- Random Forests
- Gradient Boosting Machines
- Assignments, Weekly Reading

< (日) × (日) × (4)

- One of the simplest models. Can be used as a classifier too.
- Regresses/Classifies every new point by *querying* k Nearest Neighbors
- Returns average prediction (for regression) or majority vote (for classification)
- Has strong consistency proofs
- What are some design factors with this approach?
- Any issues/problems?

< □ > < □ > < □ > < □ > < □ > < □ >

Linear Regression

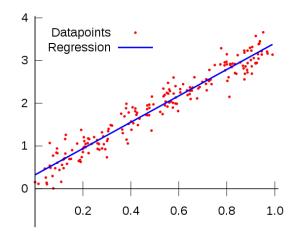


Figure: Simple Linear Regression

Giri Iyengar (Cornell Tech)

ML Quick Primer

Jan 29, 2018 8 / 37

э

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

•
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k$$

• RMSE: $\sqrt{\frac{1}{N} \sum_{i=1}^N (y_i - \hat{y}_i)^2)}$

• When does the error reach its minimum?

< □ > < □ > < □ > < □ > < □ >

Kernels: Cubic Spline Interpolation

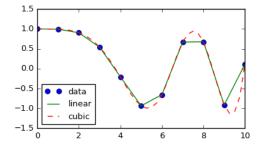


Figure: Cubic Interpolation. Courtesy Scipy

Giri lyengar (Cornell Tech)

ML Quick Primer

Jan 29, 2018 10 / 37

Kernel Regression

- Given (x_i, y_i) , $i = 1, \dots, n$
- Formulate $y_i = r(x_i) + \epsilon_i$
- Goal is to estimate r(x) with $\hat{r}(x)$

•
$$\hat{r}(x) = \sum_{i=1}^{n} w(x_i, x) \cdot y_i$$

- We need to choose the set of weights w. Both kNN and Linear Regression are special cases of this
- Many choices for kernels. E.g. Cubic Splines, Gaussian, Box

< □ > < □ > < □ > < □ > < □ > < □ >

Overview

Machine Learning

Regression

- kNN
- Linear Regression
- Kernel Regression
- 3

Classification

- Naive Bayes
- Logistic Regression
- Support Vector Machines
- Random Forests
- Gradient Boosting Machines

Assignments, Weekly Reading

Naive Bayes

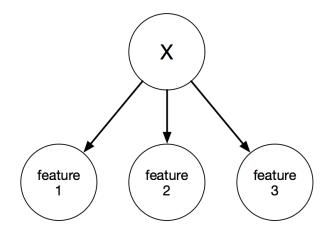


Figure: Naive Bayes Classifier

ML Quick Primer

Jan 29, 2018 13 / 37

2

- Naive because it assumes all features are independent
- $P(C_i|x_1,\ldots,x_n) \propto P(C_i) \times \prod_{k=1}^n P(x_k|C_i)$
- $\hat{y} = argmax_i P(C_i) \times \prod_{k=1}^n P(x_k | C_i)$
- To learn the model, all you have to do is to learn the individual feature distributions
- Requires much less data compared to other models that make better structural assumptions

イロト イポト イヨト イヨト

- Goal: $y = f(\mathbf{x}), y \in \Omega$
- Want to keep things linear, if possible
- ${\ensuremath{\bullet}}$ That is, We prefer something like $y=W^t{\ensuremath{\mathbf{x}}}$ or close to it

イロト 不得下 イヨト イヨト 二日

- It was discovered back in 19th century when mathematicians tried to explain observed population growth
- It fits very well with observed population growths of countries (e.g. US, Belgium, France)
- In the 60s, it was discovered again and was fitted to populations of fruit flies, cantaloupes, Humans in North Africa etc

- $Y = W^t \mathbf{x}$ results in a linear function
- Assume $Y \sim B(P(Y = 1 | \mathbf{x}))$, where B is a Bernoulli distribution
- That is, Y takes values $\{0,1\}$ with probability $\{p,1-p\}$ respectively
- \bullet We can write this as $Y \sim p^k (1-p)^{1-k}, k \in \{0,1\}$
- The Logistic Regression Model: $\ln(\frac{P(Y=1|\mathbf{x})}{P(Y=0|\mathbf{x})}) = W^t \mathbf{x}$

- The Logistic Regression Model: $\ln(\frac{P(Y=1|\mathbf{x})}{P(Y=0|\mathbf{x})}) = W^t \mathbf{x}$
- Why does this make sense?
- We want a linear combination of features. That explains $W^t \mathbf{x}$
- We need to turn that linear combination which can take any real value in something takes ranges between 0 and 1
- $\frac{P(Y=1|\mathbf{x})}{P(Y=0|\mathbf{x})}$, is the odds-ratio (is positive real number)
- Log of the odds-ratio converts this positive value into a proper real number!

< □ > < □ > < □ > < □ > < □ > < □ >

- The Logistic Regression Model: $\ln(\frac{P(Y=1|\mathbf{x})}{P(Y=0|\mathbf{x})}) = W^t \mathbf{x}$
- \bullet From this, we get $\frac{P(Y=1|\mathbf{x})}{P(Y=0|\mathbf{x})}=e^{W^t\mathbf{x}}$
- $P(Y = 1 | \mathbf{x}) = \frac{e^{W^t \mathbf{x}}}{1 + e^{W^t \mathbf{x}}}$

Fitting the Logistic Model

- We need to learn W, the weights that explain the data best
- We'll use Maximum Likelihood approach to fit the model
- $P(Y_1 = y_1, Y_2 = y_2, \dots, Y_n = y_n | W, \mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n})$ is what we are trying to maximize
- *iid* assumption. Each data point is independent. Class depends only on that data point

•
$$L(W) = \prod_i P(Y_i = y_i | W, \mathbf{x_i})$$

- $W^* = argmax_W \log L(W)$. Log because it converts the \prod to a \sum and it doesn't affect the argmax
- Let's assume that $y_i = \{-1, 1\}$. This simplifies the next steps

Fitting the Logistic Model

• If
$$y_i = 1$$
, we will use $P(Y = 1|W, \mathbf{x_i}) = \frac{e^{W^t \mathbf{x}}}{1 + e^{W^t \mathbf{x}}} = \frac{1}{1 + e^{-y_i W \mathbf{x_i}}}$
• If $y_i = -1$, we will use
 $1 - P(Y = 1|W, \mathbf{x_i}) = 1 - \frac{e^{W^t \mathbf{x}}}{1 + e^{W^t \mathbf{x}}} = \frac{1}{1 + e^{-y_i W \mathbf{x_i}}}$
• $W^* = argmax_W \log L(W) = argmin_W \sum_i \log(1 + e^{-y_i W^t \mathbf{x_i}})$

Giri Iyengar (Cornell Tech)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Support Vector Machines

Let's start with some intuition. We want to separate the two classes. Which is a better classifier?

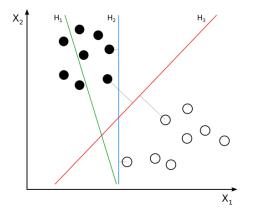


Figure: Separating Hyperplanes. Image courtesy: Zack Weinberg

Giri Iyengar (Cornell Tech)	Giri	lyengar	(Cornell	Tech)	
-----------------------------	------	---------	----------	-------	--

ML Quick Primer

Jan 29, 2018 22 / 37

- Define margin as $y_i f(\mathbf{x_i})$. So, margin is positive if we are on the correct side of the decision boundary
- We want all examples as far away from the boundary as possible. Margin as large as possible

(日) (四) (日) (日) (日)

Support Vector Machines

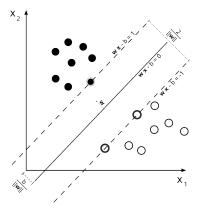


Figure: Separating Hyperplanes. Image courtesy: Cyc

Note: They conventionally add an intercept term, but it can be swept into **x** by assuming $x_0 = 1$.

Giri Iyengar (Cornell Tech)

ML Quick Primer

Jan 29, 2018 24 / 37

• As in Logistic Regression, the function that we fit is linear

•
$$f(\mathbf{x}) = \sum_{j=1}^{m} w_j x_j + b$$

- ${\ensuremath{\, \bullet }}$ We classify samples by looking at the sign of $f({\ensuremath{\mathbf x}})$
- Support vector machines maximize the minimum margin
- With some math (Hastie 2001), it is equivalent to minimizing ||W|| subject to a constraint $y_i(W\mathbf{x_i} + b) \ge 1$

- In real-life, the classes are not always separable. They overlap. So, we end up with a loss minimization scenario
- $\phi(W) = \frac{1}{2} ||W||^2 + \frac{\gamma}{2} \sum_{i=1}^{N} L(y_i, W\mathbf{x_i} + b)$
- $\bullet\,$ Minimize the above function, given some Loss function L() and user-defined regularization parameter $\gamma\,$
- Hinge Loss: $max\{0, 1 y_i f(\mathbf{x_i})\}$
- Leads to minimizing $\frac{1}{2}||W||^2 + \frac{\gamma}{2}\sum_{i=1}^N \zeta_i$, ζ_i are non-negative
- The constraint is modified to $y_i(W\mathbf{x_i} + b) \ge 1 \zeta_i$
- We try to reduce the mis-classification by holding $\sum_i \zeta_i \leq C$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

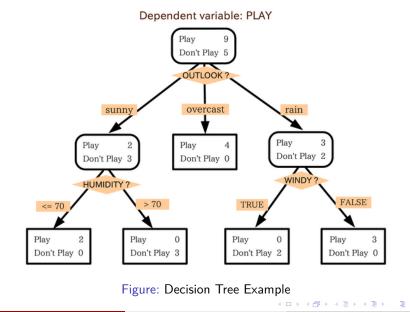
- SVMs were very successful. Some of the best classifiers of their times
- \bullet Turns out that you can generalize by applying a kernel to each ${\bf x}$ and transform to a high dimensional space
- Relatively slow to train and with the emergence of Big Data, started falling out of favor
- Deep Learning models (see later) offer better performance and are trainable using simpler algorithms

< □ > < □ > < □ > < □ > < □ > < □ >

- So far, we looked at individual classifiers
- These classifiers are what are called as Strong learners
- An alternative approach is to take a collection of much simpler techniques and combine them in intelligent ways to build a **Strong** ensemble
- Wisdom of the crowds approach

- Given a dataset of size N, sample N cases at random, with replacement
- This sample is used to build a decision tree
- $\bullet\,$ From M features randomly select m, such that m << M
- Using these m variables, and the bootstrapped data sample, build a decision tree
- Repeat the above procedure several hundreds of times
- The collection of decision trees you get is the Random Forest

Random Forests: Decision Tree



Giri Iyengar (Cornell Tech)

ML Quick Primer

Jan 29, 2018 30 / 37

- How many features per tree? Typically $m \approx \sqrt(M)$
- How many trees?
- How to split the nodes? Information Gain / Gini Impurity
- Gini: $\sum_{j=1}^m f_j(1-f_j)$
- Info Gain: $-\sum_{j=1}^{m} f_j \log_2 f_j$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- They are very competitive amongst current algorithms
- Runs efficiently on large data sets
- Thousands of input variables can be handled
- As a by-product, we find out what variables are important for classification
- Offers an approach to detect and handle with variable interactions
- They tend not to overfit

- Assume you have a regression problem: $y = f(\mathbf{x})$
- \bullet We minimize the mean squared prediction error: $(\hat{y}-y)^2$ to learn a model
- Assume you have a model $f_1(\mathbf{x})$, can you improve it?
- Try and build $f_2(\mathbf{x}) = f_1(\mathbf{x}) + h(\mathbf{x}) = y$
- Or, $h(\mathbf{x}) = y f_1(\mathbf{x})$. In general, we learn an $f_{m+1}(\mathbf{x}) = f_m(\mathbf{x}) + h(\mathbf{x})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gradient Boosting Machines

- Observe that the residual $y-f_m({\bf x})$ is the negative gradient of $\frac{1}{2}(y-f_m({\bf x}))^2$
- So, gradient boosting machines are simply gradient descent algorithms
- We generalize this idea to other loss functions and we get GBMs
- $f_0(\mathbf{x}) = argmin_{\gamma} \sum_i L(y_i, \gamma)$. Essentially learn a constant that minimizes the loss
- $f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + argmin_{h \in H} \sum_i L(y_i, f_{m-1}(\mathbf{x}) + h(\mathbf{x}))$
- That is a hard problem. So, we simplify by taking a step in the direction of the **gradient**

•
$$f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) - \gamma_m \sum_i \nabla_h L(y_i, f_m(\mathbf{x_i}))$$

イロト イポト イヨト イヨト 二日

Overview

Machine Learning

Regression

- kNN
- Linear Regression
- Kernel Regression

3 Classification

- Naive Bayes
- Logistic Regression
- Support Vector Machines
- Random Forests
- Gradient Boosting Machines

Assignments, Weekly Reading

э

< □ > < □ > < □ > < □ > < □ > < □ >

- http://www.deeplearningbook.org/contents/ml.html
- http://www.ats.ucla.edu/stat/mult_pkg/faq/general/odds_ ratio.htm
- https://en.wikipedia.org/wiki/Odds_ratio
- https://en.wikipedia.org/wiki/Support_vector_machine
- https://en.wikipedia.org/wiki/Random_forest
- http://www.ccs.neu.edu/home/vip/teach/MLcourse/4_ boosting/slides/gradient_boosting.pdf

Giri Iyengar (Cornell Tech)

ML Quick Primer

Jan 29, 2018 37 / 37