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Agenda for the day

Calibrating models
Optimizing for best performance
Time Series Prediction
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Overview

1 Calibration

2 Hyper Parameter Optimization

3 Time Series Prediction
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Calibration

Why Calibrate - I
Often times, models we build don’t give us perfect predictions. Instead we
get some number which needs to be interpreted and used in downstream
processing. E.g. controlling how much discount you offer someone based
on model score. The more likely they are to convert → higher discount.

Why Calibrate - II
Model outputs are typically not perfectly calibrated. Several model families
(e.g. SVM) don’t even claim to produce calibrated outputs. So, we need
to do post-hoc calbration
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Calibration of Models
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Calibration of Models
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Measuring Calibration

If we can measure it, we can improve it
Brier Score/Loss:

1
N

N∑
t=1

(ft − ot)2

ft is the forecast and ot is the actual outcome
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Some Calibration Algorithms

Isotonic Regression
Platt Scaling
Assignment Value Algorithm

Calibration Outline
We’ll take the trained model and its output on the validation set. Use the
true labels and model scores on the validation set to learn a calibration
function. This function is then applied to model output at test time (and
in Production).
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Isotonic Regression

Isotonic Regression
The isotonic regression finds a non-decreasing approximation of a function
while minimizing the mean squared error on the training data.
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Platt Scaling

Platt Scaling Idea
Fit a logistic curve to the output of the model

Take the model output and label
Learn a new logistic on the validation set
Apply learned model to the test set

Calibration Model

ycalib = 1
1 + exp−a×pŷ+b

Learn a and b on validation set
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Assignment Value Algorithm

AVA Model
Model Class 0 and Class 1 outputs as beta distributions
beta distributions have a scale and a shape parameter. Defined
between 0 and 1
Calculate correction parameters. True mean for each class vs
observed mean
Apply correction factor to fix the model outputs
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Beta Distributions
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Calibration

There is no one technique that works best in all circumstances
3 approaches presented here have consistently worked best on a
variety of tasks
Play with each of them and choose the best one for your task
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Hyper Parameter Optimization

Fine Tuning for improving model performance
Models have parameters that are learnt by optimizing an objective
function
In addition, models have Hyper-parameters that are usually chosen
outside the objective function. That is, the objective function is
optimized for a given setting of these hyper parameters.
E.g. λ, α in ALS, L1 and L2 regularization weights in Logistic
Regression, C in SVM etc

Outer Loop of Evaluation
Typical approach:

1 Choose a hyper parameter setting
2 Build and evaluate the model (expensive)
3 Choose next hyper parameter setting and repeat
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Hyper Parameter Optimization

Approaches for Tuning Hyper Parameters
Manual
Exhaustive
Random
Modeling the Model
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Hyper Parameter Optimization

Exhaustive Search
Combinatorial Explosion
Expensive
May miss important regions of optimization
Typically some parameters are more important and some less – it may
not know which is which
Manual search often works better than exhaustive search
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Hyper Parameter Optimization

Random Search
Random search often times works better than Exhaustive Search

Can we do better? This is an active area of research.
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Hyper Parameter Optimization

Sketch of Modeling the Model
Replace the model with a less expensive approximation
Choose the next point to sample more intelligently
Spend more time in regions of importance and less time elsewhere

Parzen Density Estimation. Construct a non-parametric model for
p(y|x)
Gaussian Process. Model p(y|x) ∼ N(m(x), k(x))
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Hyper Parameter Optimization

Definitely perform HPO
At least choose several Manual settings
Perform Random Search – relatively easy to code up
GP or Parzen estimators if you really want to tune the model

Model vs HPO
Balance budget between inner loop model iterations and outer loop HPO
iterations
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Time Series Prediction
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Time Series Prediction

Figure: S&P 500 Price History
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Classical Approach

ARIMA
In statistics and econometrics, and in particular in time series analysis, an
autoregressive integrated moving average (ARIMA) model is a
generalization of an autoregressive moving average (ARMA) model. Both
of these models are fitted to time series data either to better understand
the data or to predict future points in the series (forecasting). ARIMA
models are applied in some cases where data show evidence of
non-stationarity, where an initial differencing step (corresponding to the
”integrated” part of the model) can be applied one or more times to
eliminate the non-stationarity.
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Auto-Regressive Model

AR Model
AR(p) is parametrized by lag size p and given as

Xt = c+
p∑

i=1
φiXt−i + εt

where c is a constant, φi are coefficients to be learned and εt is the
residual error, usually zero mean.
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Moving Average Model

MA Model
MA(q) is parametrized by order q and given as

Xt = µ+
q∑

i=1
θiεt−i + εt

where µ is the expectation of Xt, θi are coefficients to be learned and εt is
the residual error.
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ARMA Model

ARMA Model
ARMA(p,q) is given as

Xt = c+
p∑

i=1
φiXt−i +

q∑
j=1

θjεt−j + εt

These models assume that the underlying time series is (weakly)
stationary. Mean and Auto-covariance don’t change with time. ARIMA is
used when model shows evidence of non-stationarity. It tries to eliminate
the non-stationarity by doing an initial differentiation operation.
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Differencing Operation

X
′
t = Xt −Xt−1

X∗
t = X

′
t −X

′
t−1

= Xt −Xt−1 − (Xt−1 −Xt−2)
= Xt − 2Xt−1 +Xt−2
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Deep Learning for Time Series Prediction

Use RNNs – Unreasonably effective
Hybrid models. RNNs and then fit ARMA / ARIMA

Giri Iyengar (Cornell Tech) Practical Considerations April 30, 2018 29 / 30



Giri Iyengar (Cornell Tech) Practical Considerations April 30, 2018 30 / 30


	Calibration
	Hyper Parameter Optimization
	Time Series Prediction

