Popular Open Source Data Processing Frameworks J

Giri lyengar

Cornell University

gi43@cornell.edu

April 25, 2018

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 1/33



Agenda for the week

e Pig

@ Spark

@ Storm

e BlinkDB
@ Druid

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 2 /33



Overview

© Storm

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 3/33



Storm

Apache Storm

Apache Storm is a free and open source distributed realtime computation
system. Storm makes it easy to reliably process unbounded streams of
data, doing for realtime processing what Hadoop did for batch processing.
Storm is simple, can be used with any programming language, and is a lot
of fun to use!

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 4 /33



Storm

Apache Storm

Storm has many use cases: realtime analytics, online machine learning,
continuous computation, distributed RPC, ETL, and more. Storm is fast:
a benchmark clocked it at over a million tuples processed per second
per node. It is scalable, fault-tolerant, guarantees your data will be
processed, and is easy to set up and operate.

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 5/33



Storm Topology

\
,c/

\ -6

Figure: Storm Topology

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 6 /33



Storm Concepts

@ Tuples - Named list of dynamically typed values. Main data-type of
Storm

@ Spouts - Generates Streams of Tuples by reading files, queues,
databases etc

@ Bolts - Consume any number of input streams and output any
number of stream

o Topology - A configuration of Spouts and Bolts that does some
processing

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 7 /33



Storm

@ Integrates with many Queues such as Kestrel, Kafka, RabbitMQ,
Kinesis

@ Simple API

@ Scalable

o Fault-Tolerant. Workers are automatically restarted if they fail.

@ Guaranteed Tuple processing

@ Supports multiple languages

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 8 /33



Storm Concept Definitions

Topologies

The logic for a realtime application is packaged into a Storm topology. A
Storm topology is analogous to a MapReduce job. One key difference is
that a MapReduce job eventually finishes, whereas a topology runs
forever (or until you kill it, of course). A topology is a graph of spouts
and bolts that are connected with stream groupings.

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 9 /33



Storm Concept Definitions

Streams
The stream is the core abstraction in Storm. A stream is an unbounded
sequence of tuples that is processed and created in parallel in a distributed
fashion. Streams are defined with a schema that names the fields in the
stream'’s tuples. By default, tuples can contain integers, longs, shorts,
bytes, strings, doubles, floats, booleans, and byte arrays. You can also
define your own serializers so that custom types can be used natively
within tuples.

@ Tuple: streams are composed of tuples
@ OutputFieldsDeclarer: used to declare streams and their schemas

@ Serialization: Information about Storm'’s dynamic typing of tuples
and declaring custom serializations

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 10 / 33



Storm Concept Definitions

Spouts

A spout is a source of streams in a topology. Generally spouts will read
tuples from an external source and emit them into the topology (e.g. a
Kestrel queue or the Twitter API). Spouts can either be reliable or
unreliable. A reliable spout is capable of replaying a tuple if it failed to be
processed by Storm, whereas an unreliable spout forgets about the tuple as
soon as it is emitted. Spouts can emit more than one stream.

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 11 /33



Storm Concept Definitions

Bolts

All processing in topologies is done in bolts. Bolts can do anything from
filtering, functions, aggregations, joins, talking to databases, and more.
Bolts can do simple stream transformations. Doing complex stream
transformations often requires multiple steps and thus multiple bolts. For
example, transforming a stream of tweets into a stream of trending images
requires at least two steps: a bolt to do a rolling count of retweets for
each image, and one or more bolts to stream out the top X images (you
can do this particular stream transformation in a more scalable way with
three bolts than with two).

Bolts can emit more than one stream.

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 12 /33



Storm Concept Definitions

Workers

Topologies execute across one or more worker processes. Each worker
process is a physical JVM and executes a subset of all the tasks for the
topology. For example, if the combined parallelism of the topology is 300
and 50 workers are allocated, then each worker will execute 6 tasks (as
threads within the worker). Storm tries to spread the tasks evenly across
all the workers.

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 13 /33



Topology example

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("words"™, new TestWordSpout(), 10);
builder.setBolt("exclaiml", new ExclamationBolt(), 3)
.shuffleGrouping("words");
builder.setBolt("exclaim2", new ExclamationBolt(), 2)
.shuffleGrouping("exclaiml");

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 14 / 33



Word count example

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new RandomSentenceSpout(), 5);

builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");
builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new Fields("word"));

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 15 / 33



Overview

© BIinkDB

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 16 / 33



BlinkDB

inkDB

Queries with Bounded Errors and Bounded Response Times on Very Large
Data

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 17 / 33



BlinkDB

BlinkDB Performance

BlinkDB has been demonstrated live at VLDB 2012 on a 100 node
Amazon EC2 cluster answering a range of queries on 17 TBs of data in
less than 2 seconds (over 200x faster than Hive), within an error of 2-10%.

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 18 / 33



BlinkDB

o Massively Parallel, Approximate

uery engine
q y g SELECT avg(sessionTime)

@ Trade-off query accuracy vs TSl
K WHERE city="San Francisco’
query time WITHIN 2 SECONDS
@ Uses bootstrapping and LBOB Queries with Time Bounds
underneath

Giri lyengar (Cornell Tech) Data Processing Frameworks

SELECT avg(sessionTime)
FROM Table

WHERE city='San Francisco’
ERROR 0.1 CONFIDENCE 95.0%

Queries with Error Bounds

April 25, 2018 19 / 33



BlinkDB Overview

BlinkDB features an Offline
Sampling Module that creates
Uniform and Stratified samples from
underlying data within a given
storage budget. The sets of
column(s) to stratify on are decided
by solving a MILP optimization
problem that takes into account the
frequently occurring column(s) in
the GROUP BY and WHERE clauses
of the queries. This module is also
responsible for periodically
updating, deleting and refreshing
the samples to minimize the
statistical bias.

Giri lyengar (Cornell Tech)

—> Uniform Samples

Stratified Samples

|:| Uniform and Stratified
samples are striped over
I:’ 100s or 1000s of machines
both on disk and in-memory

Sampling Module

Original

Data I:I:, (i.e., RDDs)
’ On-Disk  In-Memory
amples Samples
10f3
Data Processing Frameworks April 25, 2018 20 /33



BlinkDB Overview

When a query comes into the
system, the Sample Selection
Module then picks an appropriately
sized sample based on its response
time or accuracy requirements. This
is done by creating an Error Latency
Profile (ELP) for the query at
runtime by operating the query on
small samples of data and
extrapolating the error/response
time on larger samples.

gar (Cornell Tech)

SELECT
foo (*)

FROM
TABLE

Query Plan
L 1

Sample Selection

WITHINZV
HiveQL/sQL 1
Query f
Online sample selection
g |:| picks the best sample(s)
8 based on the query’s
=l E latency and accuracy
% requirements by creating
Original § an Error Latency Profile
Data I:I:I (ELP) at runtime

On-Disk In-Memory
Samples Samples e

20of3

Data Processing Frameworks April 25, 2018 21 /33



BlinkDB Overview

Finally, the queries are executed in
parallel on the chosen samples and
the answers are augmented by
appropriate error and confidence
bounds by leveraging statistical
closed forms or statistical bootstrap
techniques.

Giri

ngar (Cornell Tech)

SELECT Query Plan Error Bars &

foo (') Confidence Intervals
FROM L

TABLE )
WITHIN 2 ;7 Sample Selection Hadoop/Shark

HiveQL/SQL r A \
Query Result
182.23 +5.56

Original
Data

Sampling Module

In-Memory
Samples

On-Disk
Samples

3of3

Data Processing Frameworks

(95% confidence)

Query execution is then
done in parallel and the
answers are augmented
with appropriate error

é and confidence bounds

April 25, 2018 22 /33



Overview

© Druid

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 23 /33



Druid

Druid is an open-source data store designed for sub-second queries on
real-time and historical data. It is primarily used for business intelligence
(OLAP) queries on event data. Druid provides low latency (real-time) data
ingestion, flexible data exploration, and fast data aggregation. Existing
Druid deployments have scaled to trillions of events and petabytes of data.
Druid is most commonly used to power user-facing analytic applications.

v

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 24 /33



Druid Key Features

@ Sub-second OLAP Queries Druid’s unique architecture enables
rapid multi-dimensional filtering, ad-hoc attribute groupings, and
extremely fast aggregations.

@ Real-time Streaming Ingestion Druid employs lock-free ingestion to
allow for simultaneous ingestion and querying of high dimensional,
high volume data sets. Explore events immediately after they occur.

@ Power Analytic Applications Druid has numerous features built for

multi-tenancy. Power user-facing analytic applications designed to be
used by thousands of concurrent users.

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 25 /33



Druid Key Features

o Cost Effective Druid is extremely cost effective at scale and has
numerous features built in for cost reduction. Trade off cost and
performance with simple configuration knobs.

@ Highly Available Druid is used to back SaaS implementations that
need to be up all the time. Druid supports rolling updates so your
data is still available and queryable during software updates. Scale up
or down without data loss.

@ Scalable Existing Druid deployments handle trillions of events,
petabytes of data, and thousands of queries every second.

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 26 / 33



Druid Features

@ Column oriented distributed Datastore

e Approximate Algorithms (e.g. HyperLoglog+)

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 27 / 33



Druid Data Handling: Roll-ups

timestamp publisher advertiser gender country click price
2011-01-01T01:01:35Z bieberfever.com google.com Male USA ] 0.65
2011-01-01T01:03:63Z bieberfever.com google.com Male USA [} 0.62
2011-01-01T01:04:51Z bieberfever.com google.com Male USA 1 0.45
2011-01-01T01:00:00Z ultratrimfast.com google.com Female UK ] 0.87
2011-01-01T02:00:00Z ultratrimfast.com google.com Female UK ] 0.99
2011-01-01T02:00:00Z ultratrimfast.com google.com Female UK 1 1.53

ar (Cornell Tech) Data Processing Frameworks April 25, 2018 28 /33




Druid Data Handling: Roll-ups

timestamp

2011-01-01T01:00:00Z
2011-01-01701:00:00Z
2011-01-01T02:00:00Z
2011-01-01T02:00:00Z

publisher
ultratrimfast.com
bieberfever.com
ultratrimfast.com
bieberfever.com

ar (Cornell Tech)

advertiser
google.com
google.com
google.com
google.com

Data Processing Frameworks

gender country impressions clicks revenue

Male
Male
Male
Male

USA
USA
UK
UK

1800
2912
1953
3194

25
42
17
170

15.70
29.18
17.31
34.01

April 25, 2018

29 /33



Druid

@ Data stored column-wise
@ Only rolled-up data is stored

@ Both real-time and batch data are combined when answering a query

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 30/ 33



Druid: Example of Lambda Architecture in Action

Current Druid Architecture

Realtime
Node

Realtime
Node

-

Handoff

Queries

FRPRN
HORTONWORKS'

Giri lyengar (Cornell Tech)

Data Processing Frameworks April 25, 2018 31/33



Druid Cluster

Druid Cluster Node types

@ Historical Nodes
@ Real-time Nodes
@ Broker Nodes

@ Co-ordinator Nodes

Depends on external systems such as Zookeeper to manage intra-cluster
communications and co-ordination

Giri lyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 32/33



Giri lye

ngar (Corn

oo | =y = (0IyADON0A
dankeﬁf . tesekkir ederim

baspnanaa =
cnacyOossme | 15 s | BKJG s 1 -
2 Sthapl =S o E i nnnam
el

eal

oy denkon 2E10

enkosi

L — ™
r-.l Uratie

et =IOCHCRAKKETA I
t nmalaluutmun umms i —

shue - 0 raibh maith agat
UI]" I3 d "’: ,sa,.lg'l “ya "[!L ml!nﬂfﬁ[ﬁ = aligaly = dakmemﬂiﬂlw

<3 oy thayenadagh n § g B Mepcun

pa L T

[} [l =
ell Tech)

Data Processing Frameworks

April 25, 2018

Q>

33 /33



	Storm
	BlinkDB
	Druid

