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Storm

Apache Storm
Apache Storm is a free and open source distributed realtime computation
system. Storm makes it easy to reliably process unbounded streams of
data, doing for realtime processing what Hadoop did for batch processing.
Storm is simple, can be used with any programming language, and is a lot
of fun to use!
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Storm

Apache Storm
Storm has many use cases: realtime analytics, online machine learning,
continuous computation, distributed RPC, ETL, and more. Storm is fast:
a benchmark clocked it at over a million tuples processed per second
per node. It is scalable, fault-tolerant, guarantees your data will be
processed, and is easy to set up and operate.
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Storm Topology

Figure: Storm Topology
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Storm Concepts

Tuples - Named list of dynamically typed values. Main data-type of
Storm
Spouts - Generates Streams of Tuples by reading files, queues,
databases etc
Bolts - Consume any number of input streams and output any
number of stream
Topology - A configuration of Spouts and Bolts that does some
processing
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Storm

Integrates with many Queues such as Kestrel, Kafka, RabbitMQ,
Kinesis
Simple API
Scalable
Fault-Tolerant. Workers are automatically restarted if they fail.
Guaranteed Tuple processing
Supports multiple languages

Giri Iyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 8 / 33



Storm Concept Definitions

Topologies
The logic for a realtime application is packaged into a Storm topology. A
Storm topology is analogous to a MapReduce job. One key difference is
that a MapReduce job eventually finishes, whereas a topology runs
forever (or until you kill it, of course). A topology is a graph of spouts
and bolts that are connected with stream groupings.
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Storm Concept Definitions

Streams
The stream is the core abstraction in Storm. A stream is an unbounded
sequence of tuples that is processed and created in parallel in a distributed
fashion. Streams are defined with a schema that names the fields in the
stream’s tuples. By default, tuples can contain integers, longs, shorts,
bytes, strings, doubles, floats, booleans, and byte arrays. You can also
define your own serializers so that custom types can be used natively
within tuples.

Tuple: streams are composed of tuples
OutputFieldsDeclarer: used to declare streams and their schemas
Serialization: Information about Storm’s dynamic typing of tuples
and declaring custom serializations
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Storm Concept Definitions

Spouts
A spout is a source of streams in a topology. Generally spouts will read
tuples from an external source and emit them into the topology (e.g. a
Kestrel queue or the Twitter API). Spouts can either be reliable or
unreliable. A reliable spout is capable of replaying a tuple if it failed to be
processed by Storm, whereas an unreliable spout forgets about the tuple as
soon as it is emitted. Spouts can emit more than one stream.
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Storm Concept Definitions

Bolts
All processing in topologies is done in bolts. Bolts can do anything from
filtering, functions, aggregations, joins, talking to databases, and more.
Bolts can do simple stream transformations. Doing complex stream
transformations often requires multiple steps and thus multiple bolts. For
example, transforming a stream of tweets into a stream of trending images
requires at least two steps: a bolt to do a rolling count of retweets for
each image, and one or more bolts to stream out the top X images (you
can do this particular stream transformation in a more scalable way with
three bolts than with two).
Bolts can emit more than one stream.
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Storm Concept Definitions

Workers
Topologies execute across one or more worker processes. Each worker
process is a physical JVM and executes a subset of all the tasks for the
topology. For example, if the combined parallelism of the topology is 300
and 50 workers are allocated, then each worker will execute 6 tasks (as
threads within the worker). Storm tries to spread the tasks evenly across
all the workers.

Giri Iyengar (Cornell Tech) Data Processing Frameworks April 25, 2018 13 / 33



Topology example
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Word count example
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BlinkDB

Queries with Bounded Errors and Bounded Response Times on Very Large
Data
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BlinkDB

BlinkDB Performance
BlinkDB has been demonstrated live at VLDB 2012 on a 100 node
Amazon EC2 cluster answering a range of queries on 17 TBs of data in
less than 2 seconds (over 200x faster than Hive), within an error of 2-10%.
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BlinkDB

Massively Parallel, Approximate
query engine
Trade-off query accuracy vs
query time
Uses bootstrapping and LBOB
underneath
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BlinkDB Overview
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BlinkDB Overview
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BlinkDB Overview
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Druid

Druid
Druid is an open-source data store designed for sub-second queries on
real-time and historical data. It is primarily used for business intelligence
(OLAP) queries on event data. Druid provides low latency (real-time) data
ingestion, flexible data exploration, and fast data aggregation. Existing
Druid deployments have scaled to trillions of events and petabytes of data.
Druid is most commonly used to power user-facing analytic applications.
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Druid Key Features

Sub-second OLAP Queries Druid’s unique architecture enables
rapid multi-dimensional filtering, ad-hoc attribute groupings, and
extremely fast aggregations.
Real-time Streaming Ingestion Druid employs lock-free ingestion to
allow for simultaneous ingestion and querying of high dimensional,
high volume data sets. Explore events immediately after they occur.
Power Analytic Applications Druid has numerous features built for
multi-tenancy. Power user-facing analytic applications designed to be
used by thousands of concurrent users.
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Druid Key Features

Cost Effective Druid is extremely cost effective at scale and has
numerous features built in for cost reduction. Trade off cost and
performance with simple configuration knobs.
Highly Available Druid is used to back SaaS implementations that
need to be up all the time. Druid supports rolling updates so your
data is still available and queryable during software updates. Scale up
or down without data loss.
Scalable Existing Druid deployments handle trillions of events,
petabytes of data, and thousands of queries every second.
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Druid Features

Column oriented distributed Datastore
Approximate Algorithms (e.g. HyperLogLog+)
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Druid Data Handling: Roll-ups
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Druid Data Handling: Roll-ups
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Druid

Data stored column-wise
Only rolled-up data is stored
Both real-time and batch data are combined when answering a query
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Druid: Example of Lambda Architecture in Action
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Druid Cluster

Druid Cluster Node types
Historical Nodes
Real-time Nodes
Broker Nodes
Co-ordinator Nodes

Depends on external systems such as Zookeeper to manage intra-cluster
communications and co-ordination
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