
Map Reduce and Streaming Calculations

Giri Iyengar

Cornell University

gi43@cornell.edu

April 18, 2018

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 1 / 26

Agenda for the week

Map-Reduce
Poisson resampling
Streaming Calculations

1 Reservoir Sampling
2 Storing Items in Sets
3 Counting in single pass
4 Frequent Items in a stream
5 Estimating CDF/PDF in streaming mode

Background Reading

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 2 / 26

Overview

1 Streaming Calculations

2 Reading Assignment

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 3 / 26

Why Streaming Calculations

Streaming Calculations
In computer science, streaming algorithms are algorithms for processing
data streams in which the input is presented as a sequence of items and
can be examined in only a few passes (typically just one). These
algorithms have limited memory available to them (much less than the
input size) and also limited processing time per item. These constraints
may mean that an algorithm produces an approximate answer based on a
summary or ”sketch” of the data stream in memory.

Growing Data sizes relative to processing capacity
Our ability and desire to collect and process data is growing faster than
our ability to store, process, analyze, compute, and reason with data. At
the same time, evidence-based reasoning is very critical for business
success, more so now than ever before!

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 4 / 26

Streaming Calculations

Big Data makes even simple things painful
Even simple things like histograms, unique counts become hard when there
is too much data.

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 5 / 26

Reservoir Sampling

Sample properly from a stream
Potentially infinite stream of data - how do we extract a representative
sample from it?

Reservoir Sampling
Fast algorithms for selecting n items without replacement from a pool
of N records where N is not known in advance
Sampling in one pass using constant space in optimum time

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 6 / 26

Reservoir Sampling

Reservoir Algorithms
First step in all such algorithms is to maintain a reservoir of size n where
the first n records are placed. After that, all subsequent records are either
stored in the reservoir by kicking some sample out or skipped. At any
point in time, the state of the reservoir represents a random sample of the
original streaming dataset.

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 7 / 26

Reservoir Sampling

Fill the reservoir with first n samples
For sample t+ 1, (t ≥ n), accept with probability n

t+1 , reject otherwise
If accepted, randomly evict one of the existing n samples and replace
with the new sample

Variations of Reservoir Sampling
Do we examine every subsequent sample?
Instead, can we skip a few records?
If we skip, how do we perform the skip?

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 8 / 26

Storing Items in Sets

Bloom Filter
A Bloom filter is a space-efficient probabilistic data structure, conceived by
Burton Howard Bloom in 1970, that is used to test whether an element is
a member of a set. False positive matches are possible, but false negatives
are not, thus a Bloom filter has a 100% recall rate. In other words, a
query returns either ”possibly in set” or ”definitely not in set”.

Elements can be added to the set
Once added, Elements cannot be removed
More Elements in the set, greater the false-positive rate

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 9 / 26

Bloom Filters

m - bit vector size. k - number of independent hash functions.
Take each element. Hash it k times
Each hash will set one of the bits in the m vector to 1. Each element
will set k bits to 1
During query time, use the same k hash functions. If all hashes
match, the item maybe in the set. If not, definitely not there

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 10 / 26

Bloom Filter Details

For m bit vector, probability of a bit not set to 1 by a single hash
function is 1− 1

m

With k hash functions, probability of a bit not set to 1 is (1− 1
m)k

With n items in Filter, probability that a bit is 0 is (1− 1
m)kn

Probability of a bit being 1 is 1− (1− 1
m)kn

Probability of k bits being 1 is (1− (1− 1
m)kn)k ≈ (1− e

−kn
m)k

Filter Design
Given n and a false-positive rate you can tolerate, you can compute
optimal values of k and m.

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 11 / 26

Extensions to Bloom Filters

Counting Bloom Filters – allow delete operations
Bloomier Filters – associative arrays that return values of keys
Scalable Bloom Filters – keeps false positive rate under check as n
grows
Stable Bloom Filters – adaptation to streaming data by evicting items
Layered Bloom Filters – can remember the number of times an item
was seen

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 12 / 26

Counting Number of Unique items in a Single Pass

Problem Statement
In a potentially infinite stream, how many unique items have we seen so
far? Bloom Filters can tell you whether an item was seen on not. We also
want to know how many types of items we saw so far.

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 13 / 26

Linear Counting

Example
Estimated Linear Count is
n̂ = −m lnVn, Vn = Un

m

Un is the number of empty bins
For m = 15, n = 6, let’s say we
got this bit vector after hashing.
We estimate the count to be
4.65 items.

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 14 / 26

Linear Counting

Sketch of Linear Count estimate
Let Aj be the event that bin j is empty
Since all assignments are independent, P (Aj) = (1− 1

m)n

E(Un) =
∑m
j=1 P (Aj) = m(1− 1

m)n ≈ me− n
m

E(Vn) = E(Un
m) ≈ e− n

m

∴ n̂ = −m lnVn

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 15 / 26

FM Sketch algorithm or LogLog Counting

LogLog Counting
Any number can be represented as y =

∑
k≥0 bit(y, k)2k

Let ρ(y) = mink≥0 bit(y, k) 6= 0
Given a set of M items with n distinct, hash one by one and compute
ρ(hash(x)), ∀x ∈M
In a bit vector, set the corresponding bit to 1
Find the most significant bit that is 1. Let it be R. We have seen
approximately 2R

φ items, where φ is an empirically determined
correction factor

Intuition
If we store n items, the least significant bit is accessed n/2 times, the next
bit is accessed n/4 times, and so forth

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 16 / 26

HyperLogLog

Problem with LogLog
Not that stable. Can be improved by doing several hashes and taking
mean/median as the estimated count

HyperLogLog Intuition
The number of distinct items can be estimated by observing the number of
leading zeros in the binary representation of a number

Simple estimate of cardinality with HLL intuition above leads to large
variance
Minimize variance by splitting into subsets, and come up with
independent estimates for each subset
Final cardinality estimate is harmonic mean of each subset estimate

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 17 / 26

HyperLogLog

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 18 / 26

Putting it all together: HLL++

Linear Counting vs HLL
LinCount Is fairly accurate for
low cardinalities
HLL is not that accurate for low
cardinalities
HLL++: Start with LinCount
and then switch to HLL

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 19 / 26

Counting Frequent items in a Stream

Frequent(k)
LossyCounting(k)
SpaceSaving(k)

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 20 / 26

Frequent(k)

Sketch of the algorithm
1 Initialize storage T of size k
2 For all i

If i ∈ T , ci = ci + 1
Else if |T | < k − 1, T = T ∪ {i}, ci = 1
Else ∀j ∈ T , cj = cj − 1
If cj == 0, evict j from T

Any item that occurs more than n/k times can be shown to appear in this
register. However, the frequency counts of the items are not accurate

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 21 / 26

LossyCounting(k)

Algorithm Sketch
1 Initialize storage T of size k
2 For all i

∆(i) = b i
k c.

If i ∈ T , ci = ci + 1
Else if |T | < k, T = T ∪ {i}, ci = 1
Eliminate entry j if cj + ∆(j) < ∆(i)

In this counting approach, ∆ gives you the lower bound of count of an
item. So, the actual count for an item is ci + ∆. For a given error ε, if you
choose k = 1

ε , you are guaranteed that all counts are off by at-most εn.

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 22 / 26

SpaceSaving(k)

Sketch of the algorithm
1 Initialize storage T of size k
2 For all i

If i ∈ T , ci = ci + 1
Else if |T | < k − 1, T = T ∪ {i}, ci = 1
Else remove item arg minj cj

Replace item with least count with (i, cmin)

Both LossyCounting and SpaceSaving have highly accurate counts for
items stored early and not removed. Items stored later in the stream have
increasing error.

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 23 / 26

Overview

1 Streaming Calculations

2 Reading Assignment

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 24 / 26

Reading

HLL++
topK
Hyper Parameter Optimization
Calibration

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 25 / 26

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/40671.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/freq.pdf
http://jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://scikit-learn.org/stable/modules/calibration.html

Giri Iyengar (Cornell Tech) Streaming Calculations April 18, 2018 26 / 26

	Streaming Calculations
	Reading Assignment

