Map Reduce and Streaming Calculations

Giri Iyengar

Cornell University

gi43@cornell.edu

April 16, 2018

Giri Iyengar (Cornell Tech)

Streaming Calculations

April 16, 2018 1 / 22

э

(4) (日本)

Agenda for the week

- Map-Reduce
- Poisson resampling
- Streaming Calculations
 - Reservoir Sampling
 - Storing Items in Sets
 - Ounting in single pass
 - Frequent Items in a stream
 - Sestimating CDF/PDF in streaming mode
- Background Reading

Overview

2 Poisson resampling

Giri Iyengar (Cornell Tech)

Streaming Calculations

April 16, 2018 3 / 22

3

<ロト < 四ト < 三ト < 三ト

Counting words in some text

But I must explain to you how all this mistaken idea of denouncing pleasure and praising pain was born and I will give you a complete account of the system.

- Step 0: Parse text word by word.
- Step 1: Emit one word at a time
- Step 2: Group same words together
- Step 3: Count occurrence of each word

- 4 回 ト 4 ヨ ト 4 ヨ ト

Word Count - Emit

But	1
I	1
must	1
explain	1
to	1
you	1
how	1
all	1
this	1
mistaken	1
idea	1
of	1
denouncing	
pleasure	1

1

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Word Count - Emit

and	1	
praising		1
pain	1	
was	1	
born	1	
and	1	
I	1	
will	1	
give	1	
you	1	
a	1	
complete		1
account		1
of	1	
the	1	
system.		1

- 2

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Word Count - Sort and Group

But		1		
I	1			
I	1			
a	1			
account			1	
all		1		
and		1		
and		1		
,				
born		1		
born complete		1	1	
born complete denouncing		1	1	1
born complete denouncing explain		1	1	1
born complete denouncing explain give		1	1 1	1
born complete denouncing explain give how		1 1 1	1 1	1
born complete denouncing explain give how idea		1 1 1 1	1 1	1

Giri Iyengar (Cornell Tech)

April 16, 2018 7 / 22

3

< □ > < □ > < □ > < □ > < □ >

Word Count - Sort and Group

must	1
of	1
of	1
pain	1
pleasure	1
praising	1
system.	1
the	1
this	1
to	1
was	1
will	1
you	1
you	1

æ

< □ > < □ > < □ > < □ > < □ >

Word Count - Aggregate

But	1		
I	2		
a	1		
account		1	
all	1		
and	2		
born	1		
complete		1	
denouncing			1
explain		1	
give	1		
how	1		
idea	1		
mistaken		1	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Map Reduce

Figure: Source: highlyscalable.com blog

Giri Iyengar (Cornell Tech)

Streaming Calculations

April 16, 2018 10 / 22

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MR Demo

Giri lyengar (Cornell Tech)

April 16, 2018 11 / 22

Map Reduce Examples

• Word Count

3

<ロト < 四ト < 三ト < 三ト

- Word Count
- Unique Count

3

< □ > < □ > < □ > < □ > < □ >

- Word Count
- Unique Count
- Total Sales, Average Sales by Customer

< □ > < 同 > < 回 > < 回 > < 回 >

- Word Count
- Unique Count
- Total Sales, Average Sales by Customer
- Click-Through-Rate of Advertising Campaigns

< ∃⇒

Image: A match a ma

- Word Count
- Unique Count
- Total Sales, Average Sales by Customer
- Click-Through-Rate of Advertising Campaigns
- Little Bag of Bootstraps to Build Models

3

- ∢ ⊒ →

(A) → (A

HDFS: Hadoop Distributed File System

HDFS Architecture

Figure: Source: Apache Foundation

Giri Iyengar (Cornell Tech)

Streaming Calculations

April 16, 2018 13 / 22

3

A B A A B A

Hadoop Ecosystem

Figure: Source: Apache Foundation

Giri lyengar (Cornell Tech)

Streaming Calculations

April 16, 2018 14 / 22

э

< □ > < 同 > < 回 > < 回 > < 回 >

Overview

Giri Iyengar (Cornell Tech)

Streaming Calculations

April 16, 2018 15 / 22

3

<ロト < 四ト < 三ト < 三ト

Poisson Resampling for Efficient Bootstrapping

Bootstrapping Big Data

- Bootstrap is not efficient when dealing with Big Data $\approx 63.2\%$ of data gets resampled per bootstrap
- Need several bootstrap samples depending on what you are trying to estimate (e.g. std err or percentiles)
- Little Bag of Bootstraps is one technique (saw last week)
- Poisson Resampling is another technique

< □ > < □ > < □ > < □ > < □ > < □ >

Poisson Resampling

Motivation

Let's start with a tiny sample $\{1.5, 2.5, 3.5, 4.5\}$ and do bootstrap

Sample 1	$\{1.5, 1.5, 3.5, 2.5\}$
Sample 2	$\{2.5, 1.5, 3.5, 2.5\}$
Sample 3	$\{3.5, 4.5, 4.5, 4.5\}$

We can actually describe this in terms of sample counts

Sample 1	$\{2, 1, 1, 0\}$
Sample 2	$\{1, 2, 1, 0\}$
Sample 3	$\{0, 0, 1, 3\}$

These counts follow a $Multinomial(4,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4})$ distribution. Generally, $Multinomial(n,\frac{1}{n},\ldots,\frac{1}{n})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Big Data Problem

Not all data resides in the same place. Data is distributed. Also, in streaming cases, we may not even know \boldsymbol{n} in advance

Can we *approximate* bootstrapping without bringing all the data to one place?

- 4 回 ト 4 ヨ ト 4 ヨ ト

Approximation

What if we independently sample each data point using a $Binomial(n, \frac{1}{n})$? All sampling can be done in parallel. For large n, this is *close-enough* to multinomial sampling that it doesn't matter in practice. But, we still need to know n in advance!

Poisson Distribution

$$\lim_{n \to \infty} Binomial(n, \frac{1}{n}) = Poisson(1)$$

 $Poisson(\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$ doesn't need to know n!

Giri Iyengar (Cornell Tech)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Poisson Resampling in Action

Giri Iyengar (Cornell Tech)

Streaming Calculations

April 16, 2018 20 / 22

3

<ロト < 四ト < 三ト < 三ト

Poisson Resampling in Map-Reduce

- Independently sample in your map task using Poisson(1)
- Emit those *k* samples
- Reducers get independent datasets, run their aggregations, and return back results
 - Aggregations could be statistics, or even entire models!

- 4 回 ト 4 ヨ ト 4 ヨ ト

Giri Iyengar (Cornell Tech)

Streaming Calculations

April 16, 2018 22 / 22