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Agenda for the week

Map-Reduce
Poisson resampling
Streaming Calculations

1 Reservoir Sampling
2 Storing Items in Sets
3 Counting in single pass
4 Frequent Items in a stream
5 Estimating CDF/PDF in streaming mode

Background Reading
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Overview

1 Map Reduce

2 Poisson resampling
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Hello World in Map Reduce

Counting words in some text
But I must explain to you how all this mistaken idea of denouncing
pleasure and praising pain was born and I will give you a complete account
of the system.

Step 0: Parse text word by word.
Step 1: Emit one word at a time
Step 2: Group same words together
Step 3: Count occurrence of each word
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Word Count - Emit

But 1
I 1
must 1
explain 1
to 1
you 1
how 1
all 1
this 1
mistaken 1
idea 1
of 1
denouncing 1
pleasure 1
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Word Count - Emit

and 1
praising 1
pain 1
was 1
born 1
and 1
I 1
will 1
give 1
you 1
a 1
complete 1
account 1
of 1
the 1
system. 1
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Word Count - Sort and Group

But 1
I 1
I 1
a 1
account 1
all 1
and 1
and 1
born 1
complete 1
denouncing 1
explain 1
give 1
how 1
idea 1
mistaken 1
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Word Count - Sort and Group

must 1
of 1
of 1
pain 1
pleasure 1
praising 1
system. 1
the 1
this 1
to 1
was 1
will 1
you 1
you 1
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Word Count - Aggregate

But 1
I 2
a 1
account 1
all 1
and 2
born 1
complete 1
denouncing 1
explain 1
give 1
how 1
idea 1
mistaken 1
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Map Reduce

Figure: Source: highlyscalable.com blog
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MR Demo
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Map Reduce Examples

Word Count

Unique Count
Total Sales, Average Sales by Customer
Click-Through-Rate of Advertising Campaigns
Little Bag of Bootstraps to Build Models
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HDFS: Hadoop Distributed File System

Figure: Source: Apache Foundation
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Hadoop Ecosystem

Figure: Source: Apache Foundation
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Overview

1 Map Reduce

2 Poisson resampling
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Poisson Resampling for Efficient Bootstrapping

Bootstrapping Big Data
Bootstrap is not efficient when dealing with Big Data ≈ 63.2% of
data gets resampled per bootstrap
Need several bootstrap samples depending on what you are trying to
estimate (e.g. std err or percentiles)
Little Bag of Bootstraps is one technique (saw last week)
Poisson Resampling is another technique
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Poisson Resampling

Motivation
Let’s start with a tiny sample {1.5, 2.5, 3.5, 4.5} and do bootstrap

Sample 1 {1.5, 1.5, 3.5, 2.5}
Sample 2 {2.5, 1.5, 3.5, 2.5}
Sample 3 {3.5, 4.5, 4.5, 4.5}

We can actually describe this in terms of sample counts

Sample 1 {2, 1, 1, 0}
Sample 2 {1, 2, 1, 0}
Sample 3 {0, 0, 1, 3}

These counts follow a Multinomial(4, 1
4 ,

1
4 ,

1
4 ,

1
4) distribution. Generally,

Multinomial(n, 1
n , . . . ,

1
n)
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Poisson Resampling

Big Data Problem
Not all data resides in the same place. Data is distributed. Also, in
streaming cases, we may not even know n in advance

Can we approximate bootstrapping without bringing all the data to one
place?
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Poisson Resampling

Approximation
What if we independently sample each data point using a
Binomial(n, 1

n)? All sampling can be done in parallel. For large n, this is
close-enough to multinomial sampling that it doesn’t matter in practice.
But, we still need to know n in advance!

Poisson Distribution

lim
n→∞

Binomial(n, 1
n

) = Poisson(1)

Poisson(λ) = λke−λ

k! doesn’t need to know n!
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Poisson Resampling in Action
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Poisson Resampling in Map-Reduce

Independently sample in your map task using Poisson(1)
Emit those k samples
Reducers get independent datasets, run their aggregations, and return
back results

Aggregations could be statistics, or even entire models!

Giri Iyengar (Cornell Tech) Streaming Calculations April 16, 2018 21 / 22



Giri Iyengar (Cornell Tech) Streaming Calculations April 16, 2018 22 / 22


	Map Reduce
	Poisson resampling

