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Agenda for the week

@ Map-Reduce

@ Poisson resampling
@ Streaming Calculations

© Reservoir Sampling

@ Storing Items in Sets

© Counting in single pass

© Frequent ltems in a stream

© Estimating CDF/PDF in streaming mode

@ Background Reading
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Overview

© Map Reduce
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Hello World in Map Reduce

Counting words in some text

But | must explain to you how all this mistaken idea of denouncing
pleasure and praising pain was born and | will give you a complete account
of the system.

@ Step 0: Parse text word by word.
@ Step 1: Emit one word at a time
@ Step 2: Group same words together

@ Step 3: Count occurrence of each word
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Word Count - Emit

But 1

I 1

must 1
explain 1
to 1

you 1

how 1

all 1

this 1
mistaken 1
idea 1

of 1
denouncing 1
pleasure 1
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Word Count - Emit

and 1
praising 1
pain 1

was 1
born 1

and 1

I 1

will 1
give 1

you 1

a 1
complete 1
account 1
of 1

the 1
system. 1
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Word Count - Sort and Group

But 1

I 1

I 1

a 1
account 1
all

and

and 1

born 1
complete 1
denouncing 1
explain 1
give 1

how 1

idea 1
mistaken 1
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Word Count - Sort and Group

must 1
of 1
of 1
pain 1
pleasure

praising

system. 1
the 1
this 1
to 1
was 1
will 1
you 1
you 1
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Word Count - Aggregate

But 1

I

a 1
account 1
all 1

and

born 1
complete 1
denouncing 1
explain 1
give 1

how 1

idea 1
mistaken 1
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Map Reduce
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Figure: Source: highlyscalable.com blog
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MR Demo
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Map Reduce Examples

@ Word Count
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Map Reduce Examples

@ Word Count

@ Unique Count
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Map Reduce Examples

@ Word Count
@ Unique Count

@ Total Sales, Average Sales by Customer

Giri lyengar (Cornell Tech) Streaming Calculations

April 16, 2018

12 /22



Map Reduce Examples

@ Word Count
@ Unique Count
@ Total Sales, Average Sales by Customer

@ Click-Through-Rate of Advertising Campaigns
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Map Reduce Examples

@ Word Count

@ Unique Count

@ Total Sales, Average Sales by Customer

@ Click-Through-Rate of Advertising Campaigns
o Little Bag of Bootstraps to Build Models
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HDFS: Hadoop Distributed File System

Metadata ops |

HDFS Architecture

Namenode

Metadata (Name, replicas, ...):
/homeffoo/data, 3, ...
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Hadoop Ecosystem

Management & Monitoring
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Figure: Source: Apache Foundation
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Overview

© Poisson resampling
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Poisson Resampling for Efficient Bootstrapping

Bootstrapping Big Data

@ Bootstrap is not efficient when dealing with Big Data ~ 63.2% of
data gets resampled per bootstrap

@ Need several bootstrap samples depending on what you are trying to
estimate (e.g. std err or percentiles)

o Little Bag of Bootstraps is one technique (saw last week)

@ Poisson Resampling is another technique
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Poisson Resampling

Let's start with a tiny sample {1.5,2.5,3.5,4.5} and do bootstrap

Sample 1 | {1.5,1.5,3.5,2.5}
Sample 2 | {2.5,1.5,3.5,2.5}
Sample 3 | {3.5,4.5,4.5,4.5}

We can actually describe this in terms of sample counts

Sample 1 | {2,1,1,0}
Sample 2 | {1,2,1,0}
Sample 3 | {0,0,1,3}

These counts follow a Multinomial(4, i, i, i, i) distribution. Generally,
Multinomial (n, %, . %)
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Poisson Resampling

Big Data Problem

Not all data resides in the same place. Data is distributed. Also, in
streaming cases, we may not even know n in advance

Data Node 1 Data Node 2 Data Node 3

Can we approximate bootstrapping without bringing all the data to one
place?
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Poisson Resampling

Approximation

What if we independently sample each data point using a
Binomial(n, %)7 All sampling can be done in parallel. For large n, this is

close-enough to multinomial sampling that it doesn’t matter in practice.
But, we still need to know m in advance!

Poisson Distribution

1
lim Binomial(n,—) = Poisson(1)
n—oo n

Poisson(\) = Aeo? o ~ doesn't need to know 7!
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Poisson Resampling in Action
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Poisson Resampling in Map-Reduce

@ Independently sample in your map task using Poisson(1)

@ Emit those k samples

@ Reducers get independent datasets, run their aggregations, and return
back results

o Aggregations could be statistics, or even entire models!
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