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Agenda

Are the models working as expected?
Do the metrics make sense?
Visualizing multi-dimensional data
Trying to understand DL models
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Plotting Residuals

Residual Errors
In a good model, it is expected that the errors that the model makes will
not have any systematic nature to them. That is, the errors should be
essentially random.
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Plotting Residuals: No systematic errors in prediction

Figure: Source - Databricks blog
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Plotting Residuals: Systematic errors in prediction

Figure: Source - Databricks blog

Giri Iyengar (Cornell Tech) Visualization March 26, 2018 7 / 26



Visualizing KMeans fit

Figure: Source - Databricks blog
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ROC Curve examples

Figure: Source - MLWiki
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t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE
t-Distributed Stochastic Neighbor Embedding (t-SNE) is a (prize-winning)
technique for dimensionality reduction that is particularly well suited for
the visualization of high-dimensional datasets. The technique can be
implemented via Barnes-Hut approximations, allowing it to be applied on
large real-world datasets. It has been applied on data sets with up to 30
million examples [1].
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https://lvdmaaten.github.io/tsne/


Visualizing/reducing dimensions of high-dimensional data

PCA - preserves large distances
ISOMAP - changes similarity
function and then applies PCA
Locally linear embedding

Figure: Source: Xiaofei He
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ISOMAP

ISOMAP reduces dimensions
non-linearly
Related to kernel PCA
Instead of Euclidean distance,
use a geodesic / manifold
distance

Figure: Source: ESRI
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https://en.wikipedia.org/wiki/Isomap


Locally Linear Embedding

Figure: Source: Roweis and Saul Figure: Source: Roweis and Saul
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SNE Algorithm

Similar to LLE but use probabilities instead of distances
Compute pj|i, conditional probability that xi would pick xj as
neighbor under a locally modeled pdf

Formally pj|i =
exp(−

|xi−xj |
2

2σ2
i

)∑
k 6=i exp(− |xi−xk|

2

2σ2
i

)

Define qj|i = exp(−|yi−yj |2)∑
k 6=i exp(−|yk−yj |2)

Define C =
∑
i

∑
j pj|i log pj|i

qj|i
, the KL Divergence

Perform gradient descent to minimize C
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SNE Algorithm: KL Divergence

KL Divergence is asymmetric
Nearby points (large pj|i) weigh more than far-away points (low pj|i)
Objective function strongly favors preserving distances between
nearby points over far away points
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t-SNE Algorithm

Use pij = pj|i+pi|j
2n instead

Use qij = (1+|yi−yj |2)−1∑
k 6=i(1+|yi−yk|2)−1 ,

the Student-t distribution
Student-t distribution is
heavy-tailed. Allows for a small
probability for far-away points,
forcing them to move further
away in low-dim space
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t-SNE: Barnes-Hut approximation

As formulated, O(n2) algorithm

Doesn’t work for really large datasets
What can we do to reduce the cost?
Insight: Can we approximate roughly equally distance far away
points?
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t-SNE with Barnes-Hut approximation

Barnes-Hut approximation
Barnes-Hut is an approximation algorith used in Astronomy to simulate
n-body problem. It uses a octree representation to model bodies in a 3-D
space and recursively groups them in this octree. In 2D, we replace octree
with quadtree. Converts the n2 search into an n log n search.
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https://en.wikipedia.org/wiki/Barnes?Hut_simulation


Barnes-Hut Approximation
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Quadtree representation
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t-SNE examples: MNIST Digits

Figure: Source: Laurens van der Maaten
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t-SNE examples: Netflix movies

Figure: Source: Laurens van der Maaten

Giri Iyengar (Cornell Tech) Visualization March 26, 2018 23 / 26



t-SNE examples: Words

Figure: Source: Laurens van der Maaten
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t-SNE Multiple Map extension

Multiple word senses: e.g. (River, Bank, Bailout)
In general, how do we deal with non-metric similarities?

Extend qij =
∑

m
πmi π

m
j (1+|ymi −y

m
j |

2)−1∑
k

∑
m′

∑
l 6=k(1+|ym′

k
−ym′

l
|2)−1

Now, you get multiple maps. Each map models a different similarity
between words
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