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Recommendation Systems

o MMDS Detour 1
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http://www.mmds.org/mmds/v2.1/ch09-recsys1.pdf

Latent Factor Models

e SVD/PCA based model
@ NMF based models
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Latent Factor Models
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Figure: Factor Models
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SVD based Latent Factor Model

e A=UV
@ Use SVD to compute U and V matrices

o U: Select the top few eigenvectors of AA” resulting in a u x k matrix
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NMF

@ SVD doesn't guarantee positive entries in U or V'
e Enforcing positive entries have a couple of practical advantages

o Induces sparsity. U and V continue to remain sparse unlike SVD
o Leads to part-based representations

o Easier to interpret the weights compared with SVD
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Learning NMF models

@ Gradient Descent with projection (Force negative weights to zero at
each iteration)

e Multiplicative Updates (variation of Gradient Descent)

@ Alternating Least Squares

e Fix U. Solve for V'
e Fix V. Solve for U
o Repeat
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Netflix Prize Model and other Latent Factor Models

e MMDS Detour 2

Giri lyengar (Cornell Tech) Recommender Systems March 5 and 7, 2018 10 / 12


http://www.mmds.org/mmds/v2.1/ch09-recsys2.pdf

Other approaches for building recommendation systems

@ GloVe: It factorizes the co-occurrence matrix. You could start with
an Item-ltem Co-occurrence matrix

o Skip-gram: It can be shown that skip-gram model factorizes the
Pointwise Mutual Information matrix
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