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Agenda for the day

Entailment
Question Answering
Named Entity Recognition
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Overview

1 Textual Entailment

2 Question Answering

3 Named Entity Recognition
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Deep Understanding

What is Deep Understanding?
Students develop deep understanding when they grasp the relatively
complex relationships between the central concepts of a topic or discipline.
Instead of being able to recite only fragmented pieces of information, they
understand the topic in a relatively systematic, integrated or holistic way.
As a result of their deep understanding, they can produce new knowledge
by discovering relationships, solving problems, constructing explanations
and drawing conclusions. – Dept. of Education, Queensland

Giri Iyengar (Cornell Tech) NLP Applications Feb 28, 2018 4 / 30



Deep Understanding

What is Deep Understanding?
Students develop deep understanding when they grasp the relatively
complex relationships between the central concepts of a topic or discipline.
Instead of being able to recite only fragmented pieces of information, they
understand the topic in a relatively systematic, integrated or holistic way.
As a result of their deep understanding, they can produce new knowledge
by discovering relationships, solving problems, constructing explanations
and drawing conclusions. – Dept. of Education, Queensland

That is, Deep Understanding involves Knowledge, Reasoning, Learning,
and Action
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Textual Entailment

An example of a positive TE (text entails hypothesis) is:
text: If you help the needy, God will reward you.
hypothesis: Giving money to a poor man has good consequences.

An example of a negative TE (text contradicts hypothesis) is:
text: If you help the needy, God will reward you.
hypothesis: Giving money to a poor man has no consequences.

An example of a non-TE (text does not entail nor contradict) is:
text: If you help the needy, God will reward you.
hypothesis: Giving money to a poor man will make you a better person.
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Textual Entailment is required for many applications

Question Answering
Information Extraction
Creation of Knowledge Bases
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Textual Entailment Approaches

Build a classifier that is input [(T, H), L] sentence pairs and labels

Construct a seq2seq model to convert T to H

Construct Knowledge Bases to capture semantic information (manual,
not scalable)
Try to learn a latent knowledge representation
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Textual Entailment Recognition using RBM

Parse each sentence into a parse tree
Represent each sentence by a composite representation similar to
Recursive Tree Model
Use a Restricted Boltzmann Machine to jointly learn a latent
representation on top of these (T, H) representations
Given a sentence pair, look at the reconstruction error and classify if
they are entailed or not
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Textual Entailment Recognition using RBM

Figure: Image Source: Lyu, ICTAI 2015
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Textual Entailment Recognition using RBM

Figure: Image Source: Lyu, ICTAI 2015
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Textual Entailment Recognition using RBM

Figure: Image Source: DeepLearning4J
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IBM Watson wins Jeopardy

YouTube
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https://www.youtube.com/watch?v=P18EdAKuC1U


Application of QA Systems

Dialog Systems
Chatbots
Intelligent Assistants
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Type of QA Systems

Open - Includes General knowledge in addition to questions, whose
answers are in the text
Closed - The answers can be found completely using the Context
provided in the text and the question
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Conventional NLP Approaches to QA

Parsing
Part of speech tagging
Named Entity extraction
Encode rules. E.g. Jeopardy category, Daily Double

Giri Iyengar (Cornell Tech) NLP Applications Feb 28, 2018 17 / 30



Deep Learning approaches to closed QA

Closed QA task
I: Jane went to the hallway.
I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: It started boring, but then it got interesting.
Q: What’s the sentiment?
A: positive
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SQuAD: Stanford Question Answering Dataset

Figure: Source - Rajpurkar 2016
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GRU for QA

Figure: Source - Stroh, Mathur cs224d Report
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Seq2Seq for QA

Figure: Source - Stroh, Mathur cs224d Report
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Dynamic Memory Networks for QA

Figure: Source - Kumar et. al 2016
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Match-LSTM for QA

Figure: Source - Wang, Jiang ICLR 2017
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Match-LSTM for QA

Figure: Source - Wang, Jiang ICLR 2017
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Named Entity Recognition

Names (e.g. John Smith, New York Times)
Places (e.g. Boston, Seattle, Sarajevo)
Titles (e.g. Dr., PhD, Justice)
Dates (e.g. Sept 11th, Veterans Day, Memorial Day)
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State of the Art conventional NER

Hand-crafted features
Domain-specific knowledge
Gazetteers for each domain, language etc
Capitalization patterns

Giri Iyengar (Cornell Tech) NLP Applications Feb 28, 2018 27 / 30



biLSTM+CRF for NER

Figure: Source - Lample et al, 2016
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biLSTM + CRF

Start with GloVe / word2vec embeddings
Capture both left and right contexts for each word using LSTMs
Impose adjacency constraints using CRF that learns a transition
matrix between adjacent states
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