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Agenda for the day

@ Entailment
@ Question Answering
o Named Entity Recognition
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Overview

@ Textual Entailment
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Deep Understanding

What is Deep Understanding?

Students develop deep understanding when they grasp the relatively
complex relationships between the central concepts of a topic or discipline.
Instead of being able to recite only fragmented pieces of information, they
understand the topic in a relatively systematic, integrated or holistic way.
As a result of their deep understanding, they can produce new knowledge
by discovering relationships, solving problems, constructing explanations
and drawing conclusions. — Dept. of Education, Queensland
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Deep Understanding

What is Deep Understanding?

Students develop deep understanding when they grasp the relatively
complex relationships between the central concepts of a topic or discipline.
Instead of being able to recite only fragmented pieces of information, they
understand the topic in a relatively systematic, integrated or holistic way.
As a result of their deep understanding, they can produce new knowledge
by discovering relationships, solving problems, constructing explanations
and drawing conclusions. — Dept. of Education, Queensland

That is, Deep Understanding involves Knowledge, Reasoning, Learning,
and Action
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Textual Entailment

@ An example of a positive TE (text entails hypothesis) is:

o text: If you help the needy, God will reward you.
e hypothesis: Giving money to a poor man has good consequences.

@ An example of a negative TE (text contradicts hypothesis) is:

o text: If you help the needy, God will reward you.
e hypothesis: Giving money to a poor man has no consequences.

@ An example of a non-TE (text does not entail nor contradict) is:

o text: If you help the needy, God will reward you.
e hypothesis: Giving money to a poor man will make you a better person.
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Textual Entailment is required for many applications

@ Question Answering
@ Information Extraction

@ Creation of Knowledge Bases
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Textual Entailment Approaches

@ Build a classifier that is input [(7, H), L] sentence pairs and labels
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Textual Entailment Approaches

@ Build a classifier that is input [(7, H), L] sentence pairs and labels
o Construct a seq2seq model to convert T to H

o Construct Knowledge Bases to capture semantic information (manual,
not scalable)
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Textual Entailment Approaches

Build a classifier that is input [(T), H), L] sentence pairs and labels

Construct a seq2seq model to convert T to H

Construct Knowledge Bases to capture semantic information (manual,
not scalable)

Try to learn a latent knowledge representation
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Textual Entailment Recognition using RBM

Parse each sentence into a parse tree

Represent each sentence by a composite representation similar to
Recursive Tree Model

o Use a Restricted Boltzmann Machine to jointly learn a latent
representation on top of these (7', H) representations

@ Given a sentence pair, look at the reconstruction error and classify if
they are entailed or not
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Textual Entailment Recognition using RBM
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Figure: Image Source: Lyu, ICTAI 2015
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Textual Entailment Recognition using RBM

QOO0 X" (LQOOOX (VOO O)X

Wd Wd =

_—

@@/O/) v

_—

X3

(0000 X (0000 X

Figure: Image Source: Lyu, ICTAI 2015

Giri lyengar (Cornell Tech) NLP Applications Feb 28, 2018 11 /30



Textual Entailment Recognition using RBM

A Symmetrical, Bipartite, Bidirectional
Graph with Shared Weights

Figure: Image Source: Deeplearning4)
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Overview

© Question Answering
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IBM Watson wins Jeopardy
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https://www.youtube.com/watch?v=P18EdAKuC1U

Application of QA Systems

@ Dialog Systems
o Chatbots

o Intelligent Assistants
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Type of QA Systems

@ Open - Includes General knowledge in addition to questions, whose
answers are in the text

@ Closed - The answers can be found completely using the Context
provided in the text and the question
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Conventional NLP Approaches to QA

Parsing
Part of speech tagging
Named Entity extraction

Encode rules. E.g. Jeopardy category, Daily Double
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Deep Learning approaches to closed QA

Closed QA task

o I
l:
l:
l:
I
Q: Where is the milk?
A: garden

l:
Q: What's the sentiment?
A: positive

®© 6 6 6 6 6 o o o

Jane went to the hallway.

Mary walked to the bathroom.
Sandra went to the garden.
Daniel went back to the garden.
Sandra took the milk there.

It started boring, but then it got interesting.
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SQuAD: Stanford Question Answering Dataset

The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were
the people who in the 10th and 11th centuries gave their name to Normandy, a
region in France. They were descended from Norse ("Norman" comes from
"Norseman") raiders and pirates from Denmark, Iceland and Norway who, under
their leader Rollo, agreed to swear fealty to King Charles IIl of West Francia.
Through generations of assimilation and mixing with the native Frankish and
Roman-Gaulish populations, their descendants would gradually merge with the
Carolingian-based cultures of West Francia. The distinct cultural and ethnic
identity of the Normans emerged initially in the first half of the 10th century, and
it continued to evolve over the succeeding centuries.

In what country is Normandy located?
Ground Truth Answers: France France France France

When were the Normans in Normandy?
Ground Truth Answers: 10th and 11th centuries in the 10th and 11th
centuries 10th and 11th centuries 10th and 11th centuries

From which countries did the Norse originate?

Ground Truth Answers: Denmark, Iceland and Norway Denmark, Iceland
and Norway Denmark, Iceland and Norway Denmark, Iceland and
Norway

Figure: Source - Rajpurkar 2016
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GRU for QA
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Seq2Seq for QA
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Figure: Source - Stroh, Mathur cs224d Report
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Dynamic Memory Networks for QA

Episodic Memor: Answer module
P Vel e e e e e e :
Module

N o1
& &
£

%, %,

]
I
Question Module g

Figure: Source - Kumar et. al 2016

ar (Cornell Tech) NLP Applications Feb 28, 2018 22 /30



Match-LSTM for QA
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Match-LSTM for QA
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Overview

9 Named Entity Recognition
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Named Entity Recognition

@ Names (e.g. John Smith, New York Times)

@ Places (e.g. Boston, Seattle, Sarajevo)

o Titles (e.g. Dr., PhD, Justice)

o Dates (e.g. Sept 11th, Veterans Day, Memorial Day)
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State of the Art conventional NER

Hand-crafted features
Domain-specific knowledge

Gazetteers for each domain, language etc

Capitalization patterns
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biLSTM+CRF for NER




biLSTM + CRF

e Start with GloVe / word2vec embeddings
@ Capture both left and right contexts for each word using LSTMs

@ Impose adjacency constraints using CRF that learns a transition
matrix between adjacent states
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