
ASSIGNMENT 3

CS5304 - TRANSFER LEARNING IN CONVOLUTIONAL NEURAL NETWORKS

1. Transfer Learning

From http://cs231n.github.io/transfer-learning/

In practice, very few people train an entire Convolutional Network from scratch (with ran-
dom initialization), because it is relatively rare to have a dataset of sufficient size. Instead,
it is common to pretrain a ConvNet on a very large dataset (e.g. ImageNet, which con-
tains 1.2 million images with 1000 categories), and then use the ConvNet either as an
initialization or a fixed feature extractor for the task of interest.

We’ll explore two different types of Transfer Learning in this assignment. The first
approach is using a pre-trained CNN as a fixed feature extractor. In this technique, all
layers of the CNN is frozen except for the last fully-connected layer. This last layer is
changed to suit the task at hand. In this part of the assignment, you will take a pre-
trained model in PyTorch and replace the last fully connected layer which classifies images
into 1000 classes into a new classifier that is adapted to classify images into 5 classes.

The second approach is to fine-tune the entire pre-trained network rather than just the
final layer. Once again, you’ll replace the final fully connected layer of the network with a
5-class classifier. However, you’ll not freeze the rest of the weights of the CNN.

In both cases, you will take a small 2500 image dataset comprising 5 classes and train
(rather fine-tune) the CNN on this small dataset. In your assignment submission, you’ll
be giving us your trained models. You should train for at least 50 epochs.

We highly recommend that you train these models on GPUs. Both AWS and GCP offer
GPU instances. Another great place to get quick access to GPUs cheaply is Paperspacr
(look for the fast.ai public image there. It comes pre-loaded with PyTorch, making your
setup process easy).

We’ll post a script on Slack that will download a small imagenet dataset and create
training and validation partitions on a portion of that dataset. You should train using the
images in the train sub-directory of tiny-imagenet-5 directory.

You should take a look at the PyTorch transfer learning tutorial at
http://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

For your submission, we’ll expect the following in CMS.

• Your Transfer Learning PyTorch code in a file called assign3.py that clearly shows
that you tried both approaches of Transfer Learning and that you trained these
models for about 50 epochs (5 points)

1

http://cs231n.github.io/transfer-learning/
http://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html


2 CS5304 - TRANSFER LEARNING IN CONVOLUTIONAL NEURAL NETWORKS

• A text file called model.txt containing a string from one of vgg16, resnet50,
resnet34 indicating that you chose vgg16, resnet50, or resnet34 pre-trained model
from Torchvision. Choose only one network for your submission and it should
correspond to what is in model.txt. Otherwise, it will break our autograder and
you’ll lose points.

• Your two model files. These should be saved using the torch command (5 points
for each working model)
torch.save(yourmodel.state dict(),yourmodelfile). Call the first saved model
as model ft and the fully tranfer-learned model as model cnn.


	1. Transfer Learning

